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Abstract

When participating in school choice, students often spend substantial effort acquiring in-
formation about schools. We investigate how two popular mechanisms incentivize students’
information acquisition in the laboratory. While students’ willingness to pay for information is
significantly greater under the Immediate than the Deferred Acceptance mechanism, most stu-
dents over-invest in information acquisition, especially when they are more curious or believe
that others invest more. Additionally, some students never invest in information acquisition
but benefit equally from information provision. Both free provision and costly acquisition
of information on students’ own preferences increase their payoffs and allocative efficiency,
whereas provision of information that helps students better assessing admission chances re-
duces wasteful investments. Our results also suggest that agents’ information preferences,
such as curiosity, can play an important role in market design theory and policy.
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1 Introduction

“It was very hard, and very time-consuming,” one New Orleans resident said of trying to find a

school for her daughter, who entered kindergarten last fall. “I’m educated, I have a bachelor’s

degree, ... and I do have time to read articles online and research things.” – Arianna Prothero.

2015. “Parents Confront Obstacles as School Choice Expands,” Education Week.

School choice is now part of the education landscape in the US. However, when choosing a school,

students often have imperfect information about their own preferences regarding candidate schools,

partly because it is difficult to assess the potential educational outcomes each school provides

(Dustan, de Janvry and Sadoulet 2015). Unfortunately, acquiring this information can be costly

if a student faces too many options or must acquire information about a number of factors, such

as academic performance, teacher quality, school facilities, extra-curricular activities offered, and

peer quality. In New York City, for example, the 600-page Directory of NYC Public High Schools

covers nearly 700 programs at more than 400 schools citywide. Given this extensive information,

students incur substantial costs in processing the information to rank up to 12 high school pro-

grams they would like to attend (Nathanson, Corcoran and Baker-Smith 2013). These information

frictions can lead to substantial welfare loss (Narita 2016).

The cost of information acquisition is particularly harmful to low-income students. Indeed,

research has shown that, due to limited information, low-income high achievers in the U.S. tend not

to apply to selective colleges, in spite of the fact that generous financial aid makes these colleges

more financially accessible than the colleges these students end up choosing (Hoxby and Avery

2013, Hoxby and Turner 2015). Informational intervention can therefore successfully convince

many such students to apply to selective colleges (Hoxby and Turner 2013). Similar phenomena

are observed among low-income families in public school choice (Hastings and Weinstein 2008).

Despite the documented information disparity, the matching literature typically assumes that

all students have perfect knowledge about their own preferences, at least the ordinal ones. Re-

laxing this assumption, our study contributes to the literature by examining how different school

choice mechanisms incentivize student information acquisition in the laboratory and how informa-

tion provision can promote student welfare and allocation efficiency. Specifically, we focus on two

widely-used mechanisms, the Boston Immediate-Acceptance (hereafter IA) and the Gale-Shapley

Deferred-Acceptance (hereafter DA). By taking into account both the benefits and costs of infor-

mation acquisition, this study provides a more comprehensive evaluation of the mechanisms and

more tailored guidance for the design of school choice and other matching markets.
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To explore behavioral regularities in information acquisition in matching markets, we conduct

a laboratory experiment. It distinguishes information on one’s own preferences from that on ad-

mission chances. The former is about a student’s match value with each school, while the latter,

captured by information on others’ preferences in our setting, helps her better strategize. We then

use the Becker-DeGroot-Marschak mechanism to elicit willingness-to-pay (WTP) for information

(Becker, DeGroot and Marschak 1964).

We find that students’ WTP for their own and others’ preferences under the non-strategy-proof

IA is significantly greater than that under the strategy-proof DA, consistent with the predictions

in Chen and He (2018), a companion paper. However, there is significant heterogeneity in stu-

dents’ WTP. 15% of the students never invest in information acquisition (zero demand) and are

thus disadvantaged by their lack of information, although they can use freely provided information

efficiently. In contrast, most students’ WTP is systematically higher than the theoretical predic-

tion. Decomposing the WTP, we find that both conformity and curiosity explain students’ over-

investment in information acquisition. That is, a student tends to have a higher WTP when she

expects a higher WTP by others (conformity)1 or has a higher WTP for non-instrumental informa-

tion (curiosity). These results further imply that information provision by educational authorities

benefits zero-demand students as well as those over-investing in information acquisition (by re-

ducing their wasteful investments). Surprisingly, reducing wasteful investments extends to others’

preferences in DA under which students should have a zero WTP for such information.

These findings have several implications for market design research. First, a substantial fraction

of the students have information preferences, such as curiosity and zero demand, that, if incorpo-

rated, may improve the empirical relevance of the models of information acquisition.2

Second, we present novel evidence on how the performance of DA is affected by information

that can help students better assess admission chances. While prior literature indicates that provid-

ing such information decreases the truth-telling rate in strategy-proof mechanisms, we find that, in

a setting with schools ranking students by a post-application lottery, the truth-telling rate does not

change when such information is exogenously provided or endogenously acquired. Our proposed

explanation is that truth-telling is the unique equilibrium strategy for (almost) all students in our

setting but usually not in the previously studied settings.3

Lastly, on the methodological front, we create and implement a simple measure of curiosity

1In an equilibrium, a student has a lower WTP for information when others pay more. In other words, investments
in information acquisition are strategic substitutes. We elaborate this point further in section 5.

2A typical model imposes the expected utility hypothesis; therefore, students do not have preferences for non-
instrumental information, nor should they have zero demand for information that can increase their expected utility.

3Footnote 20 contains a precise statement regarding uniqueness.
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and prove its relevance by showing that it accounts for a quarter of the WTP for information.

2 Literature Review

Our study on information acquisition contributes to the matching literature in which it is typically

assumed that agents know their preferences perfectly (Gale and Shapley 1962, Roth and Sotomayor

1990, Abdulkadiroğlu and Sönmez 2003). Some recent theoretical papers study the effects of

matching mechanisms on information acquisition, including Bade (2015), Harless and Manjunath

(2015), Artemov (2016), Noda (2018), and Chen and He (2018). In particular, Grenet, He and

Kübler (2019) and Immorlica, Leshno, Lo and Lucier (2020) study how a mechanism can provide

more information on admission chances to facilitate information acquisition about students’ own

preferences; the former further provides evidence from university admissions in Germany.

Our study also contributes to the experimental literature on school choice which has focused

on strategy, outcome, and welfare comparisons across mechanisms and has typically assumed

that students know their own preferences (Chen and Sönmez 2006, Calsamiglia, Haeringer and

Klijn 2010, Klijn, Pais and Vorsatz 2012, Featherstone and Niederle 2016). Hakimov and Kübler

(2020) provide a recent survey of this literature. Our paper provides the first experimental evidence

on information acquisition and provision in school choice.

Related to our study, Pais and Pintér (2008) investigate how various levels of information im-

pact truth-telling, efficiency, and stability under the IA, DA, and Top Trading Cycles (TTC) mech-

anisms in a laboratory experiment of school choice. For each of the mechanisms, there are four

information levels. The least informative condition, called “zero” information, has subjects’ own

preferences as private information but lacks a common prior and information on schools’ priorities.

Other information conditions provide more information that can help subjects better assess admis-

sion chances: subjects’ own school priorities (“low” information), all subjects’ school priorities

(“partial” information), and preferences and priorities of all subjects (“full” information). They

show that, across all three mechanisms, subjects are more likely to be truth-telling with zero infor-

mation than with additional information, while there are no significant differences in truth-telling

in any other pairwise comparisons across information conditions.4 Their findings about DA can

be explained by DA’s multiple equilibria under all information conditions except zero, because of

schools’ pre-determined priorities. By contrast, truth-telling is the unique equilibrium for (almost)

4The same results are found in Pais, Pintér and Veszteg (2011). In a similar design, they study the effects of
information on the performance of the same three mechanisms in a two-sided matching setting. The information
conditions include zero, partial, and full information.
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all subjects in our setting.5 Therefore, our results about DA do not contradict theirs.

Recently, several experimental studies of school choice have examined peer information shar-

ing within networks (Ding and Schotter 2016) or intergenerational (Ding and Schotter 2019) and

top-down advice (Guillen and Hakimov 2018). In particular, Guillen and Hakimov (2018) run a

field experiment to analyze truth-telling rates under TTC while providing a description of TTC,

its properties, or both. They find that informing subjects of TTC’s properties can increase the

truth-telling rate when the information comes from a credible source.

We argue that information about subjects’ actions can help them better assess admission chances.

Related to sharing such information, computerized agents (robots) have been used in matching

market experiments to better control the human subjects’ strategic environment (Harrison and

McCabe 1996, Guillen and Hing 2014, Guillen and Hakimov 2017, Chen, Jiang, Kesten, Robin

and Zhu 2018). For instance, Guillen and Hakimov (2017) study subjects’ truth-telling rates under

TTC by grouping each subject with three robots to compete for school slots. They find that subjects

have a higher truth-telling rate when they are told that robots are truth-telling.

Beyond the matching literature, information acquisition is examined in various settings, e.g.,

bargaining (Dang 2008), committee decisions (Persico 2004, Gerardi and Yariv 2008), contract

theory (Crémer, Khalil and Rochet 1998, Crémer and Khalil 1992), coordination games (Hellwig

and Veldkamp 2009, Szkup and Trevino 2015), finance (Barlevy and Veronesi 2000, Hauswald and

Marquez 2006, Van Nieuwerburgh and Veldkamp 2010), and law and economics (Lester, Persico

and Visschers 2009). In particular, there is a large body of theoretical literature on information

acquisition in mechanism design/auction design, e.g., Persico (2000), Bergemann and Valimaki

(2006), Compte and Jehiel (2007), Crémer, Spiegel and Zheng (2009), and Shi (2012).

While this literature is mostly theoretical, there are a few experimental investigations. For

example, Gabaix, Laibson, Moloche and Weinberg (2006) conduct experiments with costly infor-

mation acquisition to compare the directed cognition and fully rational models. Eliaz and Schotter

(2007, 2010) evaluate agents’ demand for non-instrumental information, which is closely related

to our curiosity measure. Several studies report that subjects pay for non-instrumental information

in the context of social learning (Kübler and Weizsäcker 2004, Çelen and Hyndman 2012, Goeree

and Yariv 2015). In the auction literature, Choi, Guerra and Kim (2015) compare the second-price

(sealed-bid) auction with the English auction when bidders have independent values and are het-

erogeneously informed, while Gretschko and Rajko (2015) compare the two auctions in relation to

information acquisition and bidding behavior in an independent and private value environment. In

5Footnote 20 contains a precise statement regarding uniqueness.
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comparison, Bhattacharya, Duffy and Kim (2017) study endogenous information acquisition in the

context of voting behavior, whereas Page and Siemroth (2017) study information acquisition in an

experimental asset market. Szkup and Trevino (2018) solve and test experimentally a global game

of speculative attack where agents choose the precision of their private signal at a cost. In a field

experiment on discrimination, Bartos̆, Bauer, Chytilová and Matĕjka (2016) uncover differential

information acquisition based on applicants’ names. We will revisit these results in Section 5.

3 A Theoretical Framework

This section summarizes the main results from our companion theory paper (Chen and He 2018)

on the endogenous acquisition of information about one’s own and others’ preferences under both

IA and DA. These results form the basis for our experimental design and data analysis.

For completeness, we briefly introduce the setup here, with additional details in our theory

paper and Appendix A. There are a finite set of students, I , to be assigned to a finite set of schools,

S, through a centralized school choice mechanism. For each s ∈ S, there is a finite supply of

seats, qs ∈ N, and the total capacity is no more than the total number of students,
∑

s∈S qs ≤ |I|,
while qs > 0 for all s. Moreover, schools rank students using a uniform random lottery (single

tie-breaking) whose realization is unknown to students when they enter the mechanism.

Student i’s von Neumann-Morgenstern utility of school s is vi,s ∈ [v, v], 0 < v < v. Her car-

dinal preferences, Vi = [vi,s]s∈S , are an i.i.d. drawn from a joint distribution, F ; her ordinal pref-

erences are denoted by Pi. As such, we consider an independent-private-value model. Therefore,

when acquiring information about others’ preferences, a student aims to learn about the admission

chance at each school to help her play the school choice game optimally.

We now define the two school choice mechanisms.

3.1 School Choice Mechanisms

We focus on two mechanisms popular in both the research literature and actual practice: the Boston

Immediate Acceptance (IA) and the Gale-Shapley Deferred Acceptance (DA) mechanism.

IA asks students to submit rank-ordered lists (ROL) of schools. Together with the pre-announced

capacity of each school, IA uses pre-defined rules to determine the school priority rankings for stu-

dents and executes the following procedure:

Round 1. Each school considers all students who rank it first and assigns its seats in order of

their priority at that school until either there is no seat left at that school or no such student left.
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Generally, in:

Round (k > 1). The kth choice of the students who have not yet been assigned is considered.

Each school that still has available seats assigns the remaining seats to students who rank it as their

kth choice in order of their priority at that school until either there is no seat left at that school or

no such student left.

The process terminates after any Round k when either every student is assigned a seat at some

school, or the only students who remain unassigned have listed no more than k choices.

DA can be either student-proposing or school-proposing. We focus on the student-proposing

DA mechanism in this study. It uses information about the capacity of every school as well as

students’ ROLs of the schools in allocating seats. It utilizes strict rankings of schools over students

using a pre-specified set of rules and proceeds as follows:

Round 1. Every student applies to her first choice. Each school rejects the least ranked students

in excess of its capacity and temporarily holds the others.

Generally, in:

Round (k > 1). Every student who is rejected in Round (k − 1) applies to the next choice on

her list. Each school pools together new applicants and those on hold from Round (k − 1). It then

rejects the least ranked students in excess of its capacity and temporarily holds the others.

The process terminates after any Round k when no rejections are issued. Each school is then

matched with those students it is currently holding.

It is well-established that the student-proposing DA is strategy-proof (Dubins and Freedman

1981, Roth 1982), while IA is not (Abdulkadiroğlu and Sönmez 2003).

3.2 Information Acquisition and Provision in School Choice

Chen and He (2018) study information acquisition under the two mechanisms by introducing an

information acquisition stage before the school choice game. We separately investigate the incen-

tives to acquire one’s own and others’ preferences. For the former, the timing of the game is as

follows, with more details in Figure A.1 of Appendix A.1:

(i) Nature draws student cardinal preferences Vi, and thus ordinal preferences Pi, from F (V )

for each i, but i knows only the distribution F (V );

(ii) Student i invests α ∈ R+ to acquire a signal on her own ordinal preferences that informs her

the truth, Pi, or nothing; she is more likely to learn the truth with a larger α.

(iii) If Pi is learned, she then invests β ∈ R+ to acquire a signal on her cardinal preferences that

informs her the truth, Vi, or nothing; a higher β reveals the truth more often.
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(iv) Everyone knows that others engage in information acquisition, without knowing what they

successfully acquire. Regardless of what information she has acquired, every student submits

a rank-order list (ROL) of schools under either IA or DA as pre-announced.

The model differentiates between learning about ordinal and cardinal preferences, as the former

only needs a student to acquire coarse information about the schools, whereas the latter requires

her to acquire more detailed information but at a greater cost.6 In our experiment, we simplify and

combine these two types of information into one. We now summarize the first result.

Proposition 1 (Information acquisition incentives: Own preferences). In any symmetric Bayesian

Nash equilibrium (with optimal investments α∗ and β∗) under DA or IA, the following is true:

(i) α∗ > 0, i.e., students always have an incentive to learn their ordinal preferences;

(ii) under DA, β∗ (P, α∗) = 0, ∀P, α∗, i.e., there is no incentive to learn cardinal preferences;

(iii) under IA, there exists a preference distribution F such that β∗ (P, α∗) > 0 for some P , i.e.,

students have an incentive to learn their own cardinal preferences.

We next consider a student’s incentive to acquire information about others’ preferences, or,

more precisely, information about admission chances. In reality, students may have interdependent

values over schools, and thus information on others’ preferences can help one learn about her

own preferences. Here, we focus on information on others’ preferences that is solely for strategic

purposes or for assessing their admission chances at the schools.

To simplify the presentation, we assume that everyone knows her own cardinal preferences (Vi)

but not others’ preferences (V−i), and that the distribution of Vi, F (Vi), is common knowledge.

To acquire information on V−i, student i invests δ ∈ R+ and learns the truth or nothing. This

technology is described in Figure A.2 in Appendix A.1. We can now state our second proposition.

Proposition 2 (Information acquisition incentives: Others’ preferences). In any symmetric Bayesian

Nash equilibrium (with optimal investments δ∗) under a given mechanism, we have:

(i) under DA, δ∗ (V ) = 0 for all V , i.e., there is no incentive to learn others’ preferences;

(ii) under IA, there exists a preference distribution F such that δ∗ (V ) > 0 for V in some

positive-measure set, i.e., some students have incentives to learn others’ preferences.

In part (ii), the incentive under IA is present when students have sufficient conflicting interests,

which characterizes most non-trivial school choice problems. For example, when many students

have similar ordinal preferences, a student has incentives to know more about others’ preferences,
6The literature on matching usually assumes that agents know their own ordinal preferences (Roth and Sotomayor

1990), but that cardinal preferences may be unknown due to “limited rationality” (Bogomolnaia and Moulin 2001).
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as most of them compete for the same schools. In contrast, if one only likes a school that no one

else is expected to like, knowing more about others’ preferences does not help her.

Motivated by the above results, Chen and He (2018) also discuss the welfare implications

of information provision. When an educational authority provides information on students’ own

preferences, student welfare in general improves. However, providing information on others’ pref-

erences has no effect under DA due to its strategy-proofness while having ambiguous effects under

IA. These theoretical results guide our experimental design and hypotheses.

4 Experimental Design

To search for behavioral regularities in information acquisition in school choice while being guided

by our theoretical predictions, we conduct a laboratory experiment in the simplest possible envi-

ronment. Specifically, the value distribution simplifies information acquisition to a single step:

upon learning one’s own ordinal preferences, a student also learns her cardinal preferences.

Our goal is to compare student information acquisition behaviors under IA and DA and then to

evaluate the welfare implications of various information-provision policies.

4.1 The Environment

There are three students, i ∈ {1, 2, 3}, and three schools, s ∈ {A,B,C}. Each school has one

available slot and ranks students by a lottery. Student cardinal preferences are i.i.d. draws from the

distribution in Table 1. Their preferences are also highly “correlated” in the sense that their values

for schools A and C are identical and that a pair of students’ ordinal and cardinal preferences are

identical with probability 0.68. There is a single source of inefficiency: assigning school B to a

student with a low value for B when there is at least one other student having a high value for B.

Table 1: Payoff Table for the Experiment
Students s = A s = B s = C

i ∈ {1,2,3} 100 10 with probability 4/5; 110 with probability 1/5 0

Notes: The above payoffs are in points. The exchange rate is 100 points = 1 USD.

Relative to real-life school choice problems, our environment is small, but it enables us to better

identify key behavioral regularities that one may test in larger environments in future studies. We

also note that many behavioral regularities identified in small games under DA or IA continue to
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manifest themselves in large games in the laboratory as demonstrated by Chen et al. (2018).7

Assuming that every student is an expected-utility maximizer, we solve all symmetric equilib-

ria of the school choice game with information acquisition under either IA or DA for any given

information structure. Derivations under the assumption that students are risk neutral or risk averse

are relegated to Appendices A and B, respectively. To measure the incentive to acquire information

about own preferences (denoted as “OwnValue”), we endow every student with the common prior

that everyone knows only the preference distribution. For each student, we then calculate the pay-

off difference between knowing or not knowing one’s own preferences, taking into account that the

other two students may or may not know their own preferences. This difference is our theoretical

prediction related to student’s willingness to pay (WTP, henceforth) for their OwnValue. Similarly,

to measure student WTP for information about others’ preferences (denoted as “OtherValue”), we

treat preference realizations as private information. For a given student, we derive the payoff dif-

ference between knowing or not knowing others’ preferences. These results are summarized in

the last two columns of Table 3.8 Because the payoff difference depends on the number of other

students who successfully acquire information, the predicted WTPs are sometimes an interval.

4.2 Treatments and Elicitation of WTP and Beliefs

Our experiment implements a 2 (mechanisms) ×2 (information to be acquired) × 2 (information

cost) factorial design to evaluate the performance of the two mechanisms under two information

and cost conditions. The choice of the 2× 2× 2 design is based on the following considerations.

(i) IA vs. DA (between-subject): DA is dominant-strategy incentive compatible, but not IA.

Theoretically, each mechanism provides different incentives for information acquisition.

(ii) Acquiring OwnValue vs. OtherValue (between-subject): Our analyses suggest that the in-

centive to acquire information depends on the type of information that can be acquired.

(iii) Free vs. costly information acquisition (within-subject): While a free information condition

enables us to evaluate information provision policies, a costly information acquisition con-

dition better reflects reality. As this variation is implemented at the within-subject level,

we also take into account the potential order effect: For half of the sessions, subjects first

experience 10 free information rounds and then 10 costly information rounds (denoted as

“free-to-costly”); for the other half of the sessions, subjects first experience costly informa-

tion rounds and then free information rounds (denoted as “costly-to-free”). Furthermore, the
7They consider three game sizes: 4, 40, and 4000 students per game, with the last one using empirical robots.
8Relative to the case with risk neutrality, risk-averse students often have lower WTP for OwnValue and OtherValue.

However, the same directional comparison between IA and DA maintains.
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within-subject design feature allows us to evaluate whether a subject who under-invests in

information can use information effectively when it is provided for free (section 5.3).

In the free information treatments, subjects are provided information about OwnValue (or Oth-

erValue) at no cost. In comparison, in the costly information treatment, we use the Becker-Degroot-

Marshak (BDM) mechanism (Becker et al. 1964) to elicit subject’s WTP for their own or others’

values of school B. Specifically, each subject is asked to enter her WTP for her own (or others’)

values in the interval, [0, 15]. The server then collects the WTP from each subject and generates

a random number between [0, 15] for each subject independently. If a subject’s WTP is greater

than the random number, she acquires the information and pays an amount equal to the random

number; otherwise, she does not acquire the information and pays zero. The BDM procedure is

incentive compatible under the assumption of monotonicity (Azrieli, Chambers and Healy 2018).

To help subject understand the BDM mechanism, we provide subjects with numerical examples to

illustrate and then test their understanding in a quiz at the end of the instructions. Our instructions

for the BDM mechanism are adapted from those in Benhabib, Bisin and Schotter (2010).

To elicit each subject’s belief about the average WTP of her two opponents, we use the bi-

narized scoring rule (BSR) introduced by Hossain and Okui (2013). The BSR is incentive com-

patible under different risk attitudes and even when the decision maker is not an expected utility

maximizer (Schotter and Trevino 2014). As such, it is more robust than alternatives, such as the

quadratic scoring rule. In our use of the BSR, each subject submits a guess about the average WTP

of the other two subjects. The server then computes the squared error between the guess and the

actual average, i.e., SE = (guess − actual average)2. Next, the server randomly draws a number,

R, uniformly from [0, U ]. If SE ≤ R, the subject receives a fixed prize of 5 points. Otherwise, she

receives zero points. Based on our pilot sessions, we find that 90% of the squared errors fall at or

below 49. Therefore, we use 49 as the upper bound in our BSR calculation, i.e., U = 49. The

random number, R, is drawn independently for each subject, and for each round.

Our experimental instructions (Appendix C) explain DA and IA to subjects in detail, and we

include an example in the Review Questions to test subject understanding of the mechanisms.

Following the convention in experimental economics, we do not inform the subjects of their opti-

mal strategies under either mechanism. Specifically, we do not tell subjects that truth-telling is a

dominant strategy under DA, which allows us to examine their naturally emerging strategies.
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4.3 Experimental Procedures

Each experimental session consists of 20 rounds with costly (free) information for the first ten

rounds, and free (costly) information for the next ten rounds. The order is counterbalanced for

each treatment. Each session consists of 12 subjects.

At the beginning of each session, every subject is randomly assigned an ID number and is

seated in front of a computer terminal. The experimenter then reads aloud the instructions for the

first ten rounds. After this, subjects have the opportunity to ask questions, and answers are provided

to the full group. Subjects are then given ten minutes to read the instructions at their own pace and

to answer the review questions. After ten minutes, the experimenter distributes the answers and go

over them with the group. Afterwards, subjects go through ten rounds of the experiment, randomly

re-matched into groups of three at the beginning of each round. After the first ten rounds, the

experimenter reads the instructions for the second ten rounds aloud and answers any questions

in public. Subjects again complete a set of review questions, and then go through the second ten

rounds of the experiment. For example, in the acquiring OwnValue treatments, each round consists

of the following two stages:

Stage 1: Playing the game without the information on own value:

(i) Each subject is provided with the value distribution (Table 1) to induce the common prior.

(ii) Each subject is asked to rank the schools. The server then collects the rankings, draws the

school-B value for each subject, generates the tie-breaker, and allocates schools to subjects.

The allocation outcomes are shared with subjects at the end of each round.

Stage 2: Playing the game with free information or the possibility to acquire information

about own value:

(i) The server draws a new set of values for every subject. Everyone acquires her value for

school B, either for free or by paying a cost:

(a) For the free information treatment, everyone receives her own school-B value for free.

(b) For the costly information treatment, we use the BDM mechanism to elicit each sub-

ject’s WTP. We tell the subjects that everyone will know the number of other subject(s)

in her group who observe their value(s), regardless of whether she will observe her own

value or not.9 The server collects the reported WTP and generates a random number

between [0, 15] for each subject. Incentivized by the BSR, each subject submits a guess

9This design implies that the elicited WTP is only for OwnValue and does not include the incentive to learn the
number of other subjects who observe their values. Note that the number of others who receive information is needed
for computing one’s WTP for information (see Appendices A and B).
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of the average WTP of the other two subjects in her group. The server collects the

guesses and generates another random number between [0, 49] for each subject.

(ii) Afterwards, each subject receives the following feedback on her computer monitor:

(a) Free information treatment: her school B value and the fact that every subject in her

group is provided with their own value.

(b) Costly information treatment: her WTP, her random number for WTP, her guess, her

random number for her guess, the number of other subjects in her group who observe

their values, and the WTPs of the other subjects in her group.

(iii) Each subject is then asked to rank the schools. The server again collects the rankings, gen-

erates a new tie-breaker for each subject, and allocates the schools.

(iv) When a round ends, each subject receives the following feedback on her computer monitor:

her ranking, her value, the tie-breaker, her allocation, and her payoff.

The OtherValue treatments proceed in a similar way, except that each subject always knows

her own value for school B before ranking schools. The information provided or acquired is the

other two subjects’ values for school B.

After 20 rounds, we implement the Holt and Laury lottery choice procedure to elicit subjects’

risk attitudes (Holt and Laury 2002). In addition, after telling each subject her payoff from the risk

elicitation task, we offer an opportunity for subjects to acquire information about the realization

of the lottery, again using the BDM mechanism. Their WTP for this information is a measure

of their curiosity, defined as an intrinsic demand for information that has no instrumental value

(Grant, Kajii and Polak 1998, Golman and Loewenstein 2015). As risk preference measurement

is prevalent in both laboratory and field experiments, our curiosity measure can be easily imple-

mented together with almost any risk preference elicitation method. We view this simple and novel

measure of curiosity as a methodological contribution to the literature.

At the end of the experiment, each subject fills out a demographic and strategy survey on the

computer and is then paid in private. Each experimental session lasts approximately 90 minutes.

The average payment is $27.89, including a $5 show-up fee. The experiment is programmed in

z-Tree (Fischbacher 2007).

Table 2 summarizes the features of the experimental sessions. For each treatment, we conduct

three independent sessions at the Behavioral Economics and Cognition Experimental Lab at the

University of Michigan. As mentioned, each session consists of 12 subjects. No subject partici-

pates in more than one session. This design gives us a total of 24 independent sessions and 288

distinct subjects. In the process of conducting experimental sessions, we found a coding error in
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Table 2: Features of Experimental Sessions
Immediate Acceptance Deferred Acceptance

Information to Be Acquired order # of subjects order # of subjects

OwnValue: Own Preferences free-to-costly 3×12 free-to-costly 3×12
costly-to-free 3×12 costly-to-free 3×12

OtherValue: Others’ Preferences free-to-costly 3×12 free-to-costly 3×12
costly-to-free 3×12 costly-to-free 3×12

Notes: Each session, with 12 subjects, has 10 rounds with free information and another 10 rounds with costly information. For any given treatment,
sessions with free information rounds first are denoted as “free-to-costly”; and the others with costly information first are denoted as “costly-to-free”.

our z-Tree program in the second ten rounds of the experiment in the DA-OtherValue (free-to-

costly) treatment, i.e., a subject’s own value was not provided in the second ten rounds. In this

case, we use the data from the first ten rounds for these three sessions in our data analysis, since

the instructions and program for the first half are both correct. With these three additional ses-

sions, we have a total of 27 independent sessions with 324 subjects. Our subjects are University of

Michigan students, recruited using ORSEE (Greiner 2015). Experimental instructions are included

in Appendix C; the data are available from the authors upon request.

5 Experimental Results

This section focuses on subjects’ WTP for information and their welfare in the game under various

information structures. We use some shorthand notations in presenting the results. First, x >

y denotes that a measure under treatment x is greater than that under treatment y, statistically

significantly at the 5% level. Second, x ≥ y denotes that a measure under x is greater than that

under y but insignificant at the 5% level. The summary statistics of the key variables are in Table

D.1 of Appendix D, and we relegate the analysis of the rank-order lists of schools to Appendix D.4.

5.1 Willingness to Pay for Information

As predicted theoretically, subjects’ WTP for their OwnValue of school B should be greater under

IA than under DA in the experiment (Appendix A). Intuitively, information acquisition pays off

only when a subject learns that she has a high value for B. In this case, she will top rank B under

either mechanism. IA gives her a better chance of obtaining B because she only competes for B

with others who also top rank B; by contrast, she likely competes with everyone for B under DA.

Figure 1 depicts the time series of the average WTP for OwnValue, with the theoretical pre-

dictions for risk neutral subjects represented by the horizontal dashed lines. Our predictions are

often intervals, because one’s WTP depends on the number of others having acquired information,
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which is uncertain when the subject reveals her own WTP. Figure 1 shows that, while the average

WTP for OwnValue under IA is mostly within the theoretical bounds, it is substantially above the

prediction under DA. Moreover, the average WTP is lower for the subjects whose first ten rounds

give them free information, indicating the importance of learning or order effect (costly-to-free

vs. free-to-costly). We examine these empirical regularities further in subsequent subsections.
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Figure 1: Average WTP for Own Value by Rounds
Notes: The dashed lines denote the theoretical predictions for the WTP of risk-neutral subjects. Error bars represent one standard deviation.

WTP data is only available in the first ten rounds of costly-to-free sessions (i.e., costly information acquisition rounds played before those with free

information) and the last ten rounds of free-to-costly sessions (i.e., free information rounds played before those with costly information acquisition).

The first three columns in Table 3 present the session average WTPs, with the corresponding

standard deviations in parentheses, whereas the last two columns provide the theoretical predic-

tions for risk-neutral and risk-averse subjects for each treatment, respectively. In most cases, we

find that risk aversion predicts a lower WTP in our environment.

We now present our first hypothesis about WTP for OwnValue and the corresponding result.

Hypothesis 1 (WTP for OwnValue). A subject’s WTP for OwnValue under IA is greater than it is

under DA; both are positive. That is, IA > DA > 0.

Result 1 (WTP for OwnValue). A subject’s WTP for OwnValue under IA is significantly greater

than it is under DA; both WTPs are positive.

Support: Table 3 presents the session average WTP for each treatment. Taking each session as

an independent observation, we reject the null of no difference in favor of Hypothesis 1 that IA >

DA (p = 0.03, one-sided Wilcoxon rank-sum test). Furthermore, the average WTP for OwnValue

under IA is 6.56 (s.d. 4.78), while that under DA is 4.44 (s.d. 4.38). Both are significantly different

from zero at the 1% level.
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Table 3: Average Willingness-To-Pay for Information by Treatment
All six Free-to-Costly Costly-to-Free Theoretical Prediction

Treatment Sessions Sessions Sessions Risk Neutral Risk Averse

IA OwnValue 6.56 5.56 7.57 [5.2, 8] [4.9, 7.7]
(4.78) (4.59) (4.75)

IA OtherValue 4.51 4.00 5.02 [0, 0.24] [0, 0.46]
(4.55) (4.55) (4.49)

DA OwnValue 4.44 3.16 5.72 0.67 [0.3, 0.4]
(4.38) (4.05) (4.33)

DA OtherValue 2.21 1.90 2.52 0 0
(3.16) (3.25) (3.04)

Notes: The WTPs are measured in experiment points. There are six sessions in each treatment, three sessions with free information rounds first
(denoted as free-to-costly) and the other three with costly information first (denoted as costly-to-free). Standard deviations are in parentheses and
are calculated by treating each subject-round outcome as one observation. Therefore, for each treatment, there are 720 observations from the 10
costly rounds for these 72 subjects, half of which are from the costly-to-free treatments, while the other half are from the free-to-costly treatments.

We next examine a subject’s WTP for information about others’ preferences. Figure 2 depicts

the time series of the average WTP for OtherValue, again, with the theoretical predictions for

risk-neutral subjects depicted by the horizontal lines. Our subjects exhibit a substantially greater

WTP than our predictions with either risk neutrality or aversion. We summarize our theoretical

predictions in the following hypothesis and then present the corresponding result.
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Figure 2: Average WTP for Others’ Values by Rounds
Notes: The dashed lines denote the theoretical predictions for the WTP of risk-neutral subjects. Error bars represent one standard deviation.

WTP data is only available in the first ten rounds of costly-to-free sessions (i.e., costly information acquisition rounds played before those with free

information) and the last ten rounds of free-to-costly sessions (i.e., free information rounds played before those with costly information acquisition).

Hypothesis 2 (WTP for OtherValue). A subject’s WTP for OtherValue is zero under DA regardless

of risk attitude, whereas it is positive under IA. Therefore, IA > DA = 0.
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Result 2 (WTP for OtherValue). A subject’s WTP for OtherValue under IA is significantly greater

than it is under DA, but both are significantly different from zero: IA > DA > 0.

Support: Table 3 presents the average WTP for OtherValue in each treatment. Treating each

session as an independent observation, we reject the null of no difference in favor of Hypothesis 2

that a subject’s WTP for OtherValue follows IA > DA (p = 0.01, one-sided Wilcoxon rank-sum

test). Furthermore, the average WTP for OtherValue under IA is 4.51 (s.d. 4.55), while that under

DA is 2.21 (s.d. 3.16). Both are significantly different from zero at the 1% level.

The low WTP for OtherValue in DA shows that the theoretical predictions has some bite.

Additionally, under either IA or DA, a subject’s WTP for OwnValue is significantly greater than

that for OtherValue (p = 0.01, one-sided Wilcoxon rank-sum test), consistent with our predictions.

In sum, the directions of our WTP comparisons across mechanisms and across OwnValue

and OtherValue are consistent with theory. However, subjects often exhibit an access WTP or

over-investment for information relative to equilibrium predictions. Similar over-investments has

been observed in other endogenous information acquisition experiments in the context of jury or

committee voting (Bhattacharya et al. 2017), private value auctions (Gretschko and Rajko 2015),

as well as prediction markets (Page and Siemroth 2017).10

As excess WTP for information has important welfare implications, it is crucial to understand

its determinants. To do so, we rely on a variety of subject traits, such as curiosity, risk preferences,

and conformity. In the following, we first examine the determinants of WTP at the subject level

(section 5.1.1) and then in panel regressions (section 5.1.2). Based on these findings, we decom-

pose the observed WTP into the effects of behavioral and cognitive factors (section 5.2). Lastly,

we investigate the behavior of those who never invest in information acquisition (section 5.3).

5.1.1 Determinants of WTP for Information: Subject-Average

We first investigate the determinants of WTP for information at the subject level. Because the

elicited WTP is censored below at 0 and above at 15, we use the following Tobit model to analyze

the determinants of the observed subject average WTP, denoted by WTP i:

WTP
∗
i = X ′iβ + εi, andWTP i = max{0,min{WTP

∗
i , 15}},

10Bhattacharya et al. (2017) explain their observed over-investment as a result of a combination of poor strategic
thinking and the quantal response equilibrium model; Gretschko and Rajko (2015) explain the over-investment with
regret avoidance. Page and Siemroth (2017) find that their subjects tend to acquire more information if they have
larger endowments, existing inconclusive information, lower risk aversion, and less experience in financial markets.
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where εi is normally distributed; Xi is a vector of independent variables and controls; and only a

censored version of the latent variable WTP
∗
i is observed, denoted by WTP i. In the data, WTP i

is the average of subject i’s WTPs from all rounds and is censored for 18% of our main sample

(43 out of 241 consistent subjects, defined below).11 Our independent variables include the four

treatment dummies and demographics. Furthermore, we control for the following variables:

(i) % playing a dominated strategy w/ free info under DA/IA: This variable measures the

fraction of times a subject plays a dominated strategy in the free information rounds. Under

IA, a dominated strategy is top ranking school C; under DA, it is not reporting true ordinal

preferences.12 As such, this variable is negatively correlated with a subject’s understanding

of the mechanism. We expect that confusion about the mechanism could lead to sub-optimal

information acquisition, but we are agnostic about the direction.

(ii) Costly-to-free: This dummy variable indicates that a session follows the costly-to-free order.

Playing the game with costly information acquisition in the first ten rounds imposes a higher

cognitive load as subjects must simultaneously learn both the school choice game and the

information acquisition game. Moreover, one may learn through the free-information rounds

the true value of information.

(iii) Curiosity: This variable measures a subject’s curiosity using her WTP for the lottery real-

ization in the Holt-Laury risk elicitation task. As such information is non-instrumental, this

WTP reflects a subject’s “curiosity,” or general preference for information.

(iv) Risk aversion: Risk aversion is measured as the switching point in the Holt-Laury lottery

choice menu. Following the literature, we define a consistent subject as one who exhibits a

single switching point and chooses the right column in the last lottery choice. In our sample,

241 of the 288 subjects (84%) are consistent; among them, 78% are risk-averse, 16% risk-

neutral, and 7% risk-loving. Theoretically, a greater degree of risk aversion is associated with

a lower WTP for information (see Appendix B). Intuitively, in our environment, WTP for

information is a cost incurred with certainty and determined by the utility difference between

the uncertain outcomes associated with the two information sets. Risk aversion, implying a

concave utility function, makes the difference smaller in terms of certainty equivalent.

In the following, again, we first state our hypothesis and then discuss our results.

11In a robustness check, we find similar results in linear models (see Table D.2 in Appendix D).
12Among the consistent subjects, as Table D.1 shows, the proportion of dominated strategy play is 0.9% (0.6%) in

the IA OwnValue (OtherValue) treatment; the proportion is 8.5% (7.4%) in the DA OwnValue (OtherValue) treatment,
lower than that in prior laboratory experiments on DA. In a survey of experiments on matching markets, Hakimov and
Kübler (2020) report that the average proportion of dominated strategy play is 30% when subjects rank three schools
under DA. Dominated strategy play in DA might reflect that DA is not obviously strategy-proof (Li 2017).
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Hypothesis 3 (Curiosity, Risk Aversion, Order Effect, and Dominated Strategies). Subjects, who

are more curious, less risk averse, in the costly-to-free treatments, or play dominated strategies

more often, have a higher WTP for OwnValue and OtherValue.

Table 4 presents the results for the four Tobit specifications investigating the determinants of

subject-average WTP. Column (1) includes the results for our full sample, whereas columns (2)-(4)

include only consistent subjects, progressively adding more controls.

While the treatment effects estimated from the Tobit model are largely consistent with Results 1

and 2, this set of analyses uncovers additional findings. First, the variables, “% playing a domi-

nated strategy with free info” and curiosity, are each positively correlated with WTP. However, the

positive correlation between playing a dominated strategy under IA and WTP is not statistically

significant, possibly because only 8% of the subjects ever play a dominated strategy under IA.

Furthermore, the timing of the information acquisition game in the experiment matters. That is,

subjects exhibit a higher WTP when costly-to-free = 1. Several explanations are consistent with

this order effect, e.g., cognitive load, learning, and anchoring.13 Lastly, consistent with our theo-

retical prediction, we find that subjects with a greater risk aversion exhibit a lower WTP (column

3); however, risk aversion becomes insignificant once we include demographic controls (column

4). We summarize our findings below.

Result 3 (Curiosity, Risk Aversion, Order Effect, and Dominated Strategies). Subjects who are

more curious, less risk averse, in the costly-to-free treatments, or play dominated strategies under

DA more often, have a significantly higher WTP for OwnValue and OtherValue.

5.1.2 Determinants of Willingness to Pay for Information: Panel Data Analyses

We next explore within-subject time-series variations using panel regressions on the subject-round

observations. Compared to the analysis of the subject average WTP in section 5.1.1, panel re-

gressions exploit the i.i.d. draws of subject values for school B in each round and investigate the

dynamics of subject WTP within a session. Based on our theoretical analysis (Appendix A), we

formulate the mechanism effect on incentives to acquire information as Hypothesis 4.

13This order effect is consistent with previous experimental findings that a higher cognitive load can cause sub-
optimal play (Bednar, Chen, Liu and Page 2012). Alternatively, subjects can learn that information is not as useful
as they might have thought after receiving it for 10 rounds in the free-to-costly treatment. We thank an anonymous
referee for suggesting this explanation. Another explanation for this order effect is anchoring. That is, if a subject
receives information on her own or others’ values for school B for free for the first ten rounds, she starts with an
anchor of zero, which might in turn lower her WTP for the second ten rounds when information is no longer free. We
thank Yeon-Koo Che for suggesting this explanation.
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Table 4: Determinants of Subject-Average WTP: Tobit Model
(1) (2) (3) (4)

Full Sample Sub-sample Sub-sample Sub-samplea

IA OwnValue 6.45∗∗∗ 6.26∗∗∗ 5.20∗∗∗ 3.33
(0.56) (0.57) (1.12) (4.06)

IA OtherValue 4.32∗∗∗ 4.05∗∗∗ 3.48∗∗∗ 1.33
(0.62) (0.72) (1.22) (4.19)

DA OwnValue 4.13∗∗∗ 3.78∗∗∗ 3.05∗∗∗ 1.09
(0.71) (0.82) (1.11) (3.98)

DA OtherValue 1.47∗∗∗ 1.01∗∗ 1.03 -0.81
(0.45) (0.47) (1.17) (4.04)

% playing a dominated strategy w/ free info (in percentage points)b

IA 0.13 0.12
(0.10) (0.11)

DA 0.07∗∗∗ 0.07∗∗∗

(0.02) (0.02)
Curiosity 0.34∗∗∗ 0.34∗∗∗

(0.05) (0.05)
Costly-to-free 1.94∗∗∗ 1.87∗∗∗

(0.46) (0.36)
Risk Aversion -0.30∗∗ -0.24

(0.14) (0.16)
Female -0.91∗∗

(0.44)
Graduate Student 0.49

(1.93)
Black -1.52

(1.45)
Asian -0.78∗

(0.44)
Hispanic -2.88∗∗

(1.11)

#Subjects 288 241 241 241
#Clusters 24 24 24 24

Notes: The outcome variable in all regressions is the subject-level average WTP for information. The regressions do not include a constant. There
are 42 (out of 241, or 17%) subjects with an average WTP = 0 and one subject with WTP = 15. Columns 2–4 include only consistent subjects in the
Holt-Laury lottery game. Column 4 also includes the following controls: age, ACT score, SAT score, dummy for other non-white ethnicities/races,
dummy for ACT score missing, dummy for SAT score missing, dummy for degree missing, dummy for age missing, dummy for ethnicity missing,
and dummy for gender missing. Standard errors clustered at the session level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
a. A treatment dummy’s coefficient represents the average WTP in that treatment with all other control variables being zero. To see if two treatments
have different average WTPs, we test if the two corresponding coefficients are equal. For example, in column (4), any pair of treatments have a
WTP difference significant at the 5% level, except for IA OtherValue and DA OwnValue. In columns (1)–(3), the difference between every pair of
treatments is significant at the 1% level.
b. “% playing a dominated strategy w/ free info” (in percentage points) is defined as the percentage of times a subject plays a dominated strategy in
rounds without information acquisition. Under IA, a dominated strategy is top ranking school C; under DA, a dominated strategy is not reporting
true ordinal preferences. Among the consistent subject, those in the IA OwnValue and OtherValue treatments has a mean = 0.8 percentage points
(s.d. = 3.2, n = 120, with 110 of them having this variable equal to zero); those in the DA OwnValue and OtherValue treatments have a mean
= 8.0 percentage points (s.d. = 13.8, n = 121, with 57 of them having this variable equal to zero).

Hypothesis 4 (Mechanism Effect & Highe-B Value). (i) A high value for school B does not in-

crease a subject’s WTP for OtherValue under DA; however, (ii) it should increase a subject’s WTP

for OtherValue under IA.

The intuition for Hypothesis 4(ii) is as follows. Under IA, a high-B subject will receive B for

sure by top ranking it if no one else top ranks B. However, if there are another one or two high-B
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subjects (who may also top rank B), it can be optimal for the subject to top rank A instead. This is

exactly the potential payoff that the subject can enjoy from learning about others’ preferences.

We further investigate how a subject’s WTP is affected by her guess of others’ WTP. In our en-

vironment, investments in information acquisition under IA can be seen as strategic substitutes, as

defined by Bulow, Geanakoplos and Klemperer (1985). Namely, subjects’ information-acquisition

investments mutually offset one another in equilibrium: A subject has a lower WTP when she

expects others having a higher WTP. Intuitively, when a subject’s own value is unknown, it is a

dominant strategy to submit ABC; the benefit of acquiring information on one’s own value is to

submit BAC if school B turns out to be the best. However, the magnitude of this benefit decreases

with the number of other subjects playing BAC which is positively correlated with others’ WTP

for information. Similar arguments apply for the incentive to acquire information about others’

values. The derivations are available in Appendix A. Note that this correlation is absent under DA

due to its strategy-proofness. This leads to our next hypotheses.

Hypothesis 5 (Information Acquisition as Strategic Substitutes). Under IA, subjects’ WTP for

OwnValue and OtherValue should be lower if they expect that others’ WTP is higher. Under DA,

the WTP of a subject is independent of others’ WTP.

To test Hypotheses 4 and 5, similar to our analysis of the subject-average WTP (Table 4), we

specify the following Tobit model, taking into account that WTP is bounded within [0, 15]:

WTP ∗
i,t =αi + β1High B × IA OtherV aluei,t + β2High B ×DA OtherV aluei,t

+ β3WTP Guessi,t + β4WTP Guessi,t ×DAi,t + Controlsi,t + εi,t,

WTPi,t =max{0,min{WTP ∗
i,t, 15}},

(1)

where i indexes subjects, while t indexes rounds (within each session); WTP ∗i,t and WTPi,t re-

spectively denote the unobserved latent and the observed censored WTP. Given the non-linear

nature of the Tobit model, we cannot consistently estimate αi as subject fixed effects with a short

panel (ten rounds). Consequently, we use a random effects Tobit model. For the above specifica-

tion, we run the analyses for all four treatments both individually and pooled.14

Our explanatory variables includeHigh B×IA OtherV aluei,t, which equals one if in round t

subject i has a high value for school B under the treatment IA OtherValue, and zero otherwise. We

also include High B × DA OtherV aluei,t, which we define similarly.15 Our theoretical model

14As robustness checks, we also estimate linear panel regressions with fixed effects (Table D.4) and then random
effects (Table D.5) in Appendix D.

15For the other treatments, IA or DA OwnValue, it is impossible to define a similar variable, as subjects do not know
their own value for school B when deciding whether to acquire information.
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predicts that the coefficient of High B × IA OtherV aluei,t should be positive, whereas that of

High B ×DA OtherV aluei,t should be zero. Our empirical results support these predictions.

Another two key explanatory variables are WTP Guessi,t, which is subject i′s guess of her

opponents’ average WTP in round t, and its interaction with DAi,t. We predict that a risk-neutral

student i′s own WTP and WTP Guessi,t should be independent of each other under DA and

negatively correlated under IA.16

We note the possibility that common shocks to i in round t may affect both WTPi,t and

WTP Guessi,t. We address this potential endogeneity concern with an instrumental-variable

approach and present the results in Tables D.4 and D.5 in Appendix D. Specifically, we use

the realization of opponents’ WTP in the previous round as an instrumental variable (IV) for

WTP Guessi,t. This variable is correlated with WTP Guessi,t as it provides information about

how others play the game, but does not have a direct effect on WTPi,t. Provided that the IV

is valid, we fail to reject the null hypothesis that WTP Guessi,t is exogenous. Therefore, we

conclude that endogeneity is not an issue for our analyses.

Finally, other controls include round (i.e., a linear time trend) and round in costly-to-free ses-

sions. It should be emphasized that a large set of robustness checks reveals that inclusion of addi-

tional controls, such as a subject’s accumulated wealth at the beginning of the round and whether

a subject successfully acquired information in t− 1, does not change our results significantly.

We present the results of our panel data analyses in column (1) of Table 5, while Table D.3

shows robustness checks with inclusion or exclusion of additional controls. These results show

that the coefficient onWTP Guessi,t is always positive and significant, contrary to our theoretical

predictions. Moreover, there are no significant differences between IA and DA (column 1). The

positive correlation is found in every single treatment (column 2–4). Subjects lower their excess

WTP over time, although this reduction is only significant in IA OwnValue. Lastly, the coefficients

on our four factors (“% playing a dominated strategy with free info”, curiosity, costly-to-free, and

risk aversion) are similar to those in Table 4, although “% playing a dominated strategy with free

info” under IA now has a larger coefficient. We summarize our results below.

Result 4 (Mechanism Effect & High-B Value). For subjects with high values for school B, con-

trolling for their guess about others’ WTP for information, their WTP for OtherValue is not signif-

icantly different from zero under DA, but is positive and significant under IA.

By Result 4, we fail to reject Hypothesis 4(i) or (ii), indicating that the effect of having a high-
16With certain risk-averse subjects, the WTP is still negatively correlated with WTP Guessi,t under IA, but the

correlation is weakly positive under DA for OwnValue. See Appendix B for more details.

22



Table 5: Determinants of WTP: Pooled and Separate Random-Effects Panel Tobit Analyses
IA DA

Pooled OwnValue OtherValue OwnValue OtherValue
(1) (2) (3) (4) (5)

IA OwnValue 3.48∗∗∗

(1.26)
IA OtherValue 1.44

(1.12)
DA OwnValue 2.06∗

(1.06)
High B × IA OtherValue 3.16∗∗∗ 3.66∗∗∗

(0.86) (0.90)
High B × DA OtherValue -0.67 -0.63

(1.17) (0.96)
WTP Guessi,t: Guess of Opponents’ WTP in t 0.78∗∗∗ 0.83∗∗∗ 0.79∗∗∗ 0.90∗∗∗ 1.06∗∗∗

(0.14) (0.17) (0.15) (0.08) (0.21)
WTP Guessi,t × DA 0.23

(0.18)
% playing a dominated strategy w/ free info (in percentage points)

IA 0.26∗ 0.38∗ 0.13
(0.15) (0.23) (0.53)

DA 0.08∗∗ 0.05∗∗ 0.06
(0.03) (0.03) (0.07)

Curiosity 0.39∗∗∗ 0.32∗∗ 0.50∗∗ 0.35∗∗∗ 0.44∗∗∗

(0.06) (0.16) (0.22) (0.12) (0.14)
Costly-to-free 1.23∗ 2.02∗ 2.71∗∗∗ -0.23 -0.41

(0.65) (1.12) (0.99) (1.15) (1.88)
Risk Aversion -0.35 -1.63∗∗∗ -0.41 -0.37 0.31

(0.21) (0.53) (0.31) (0.32) (0.24)
Round -0.04 -0.11∗∗∗ 0.15 0.02 -0.24

(0.07) (0.03) (0.25) (0.05) (0.17)
Round × Costly-to-free -0.10 -0.20∗∗∗ -0.19 -0.06 0.11

(0.09) (0.07) (0.27) (0.06) (0.18)
Other demographical controls Yes Yes Yes Yes Yes

# of observations 2169 567 513 576 513
# of subjects 241 63 57 64 57

Notes: Estimates are from random effects panel Tobit models for each treatment separately and pooled, including only consistent subjects in the
Holt-Laury lottery game. The sample includes 9 rounds of costly information acquisition for every subject, excluding the first round. Column (1)
repeats column (2) in Table D.3. All specifications include these additional controls: dummy for female, dummy for graduate student, dummy for
black, dummy for Asian, dummy for Hispanic, age, ACT score, SAT score, dummy for ACT score missing, dummy for SAT score missing, dummy
for degree missing, dummy for age missing, dummy for ethnicity missing, and dummy for gender missing. Standard errors clustered at session
level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

B value on WTP for OtherValue is largely consistent with our theoretical predictions under both

IA and DA. By contrast, we obtain the following result regarding conformity.

Result 5 (Conformity). Subjects who expect their opponents to have a higher WTP increase their

own WTP for OwnValue and OtherValue; there is no significant difference between IA and DA.

By Result 5, we reject Hypothesis 5. This result indicates that subjects are willing to pay more

to know their own and others’ preferences when they expect their opponents have high WTPs,

a phenomenon we call conformity. This could be due to a consensus effect according to which

people think others do what they themselves do. It could also be a competitive effect whereby
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subjects believe they need to be informed to compete with others who are informed as well. For

brevity, we use the term conformity but remain agnostic to the causes of this phenomenon.

5.2 Decomposition of a Subject’s WTP

In this section, we investigate possible reasons that subjects over-invest in information acquisition.

Specifically, we decompose our observed WTP treatment-by-treatment according to the following

factors identified in our panel analysis: order effect, learning over rounds, “% playing a dominated

strategy with free info”, conformity, curiosity, and risk aversion.

To perform our decomposition, we first estimate the Tobit model, as in equation system (1),

for each separate treatment (columns 2–5 in Table 5). Doing so allows each factor to have a

different effect in a given treatment, as the coefficients for some of our key variables change across

treatments. Based on these estimated coefficients, Table 6 presents the decomposition of subject

WTP for information. Overall, this analysis shows that our six factors can explain the majority of

the observed WTP.17 We discuss each factor below.

(i) Order Effect. The costly-to-free order is associated with an average of 1.23 points extra WTP

in every round among all treatments (Table 5, column 1), but that this effect is not present in the DA

treatments (Table 5, columns 4 and 5). Moreover, the order also affects learning over rounds based

on the coefficients on “Round” and “Round × Costly-to-free”: in costly-to-free sessions, learning

over rounds reduces WTP faster. Indeed, by round 10, WTP in costly-to-free sessions is reduced

by 1.12 points relative to round 2, while this reduction is only 0.32 in free-to-costly sessions.

To quantify the order effect, we consider the counterfactual of replacing costly-to-free by free-

to-costly, i.e., setting both “Costly-to-free” and “Round × Costly-to-free” to zero. We then mea-

sure the order effect as the difference between the model prediction based on the true variable

values and the prediction under the counterfactual. Both predictions are censored to guarantee

that the predicted WTP falls between 0 and 15. Table 6 shows that the presence of order effect

contributes to WTP by −0.21 to 1.18 points across treatments.

(ii) Learning over rounds. To assess learning over rounds, we consider the counterfactual of

replacing a subject’s behavior in rounds 2–9 with her behavior in round 10, as round 1 is omitted

from our regression. Using the same censoring as above, we find that the estimated effect of

17As a robustness check, decompositions based on the pooled regression (column 1 in Table 5) are presented in
Table D.6 in Appendix D, which show similar results.
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Table 6: Decomposition of Subject WTP for Information
IA OwnValue IA OtherValue DA OwnValue DA OtherValue

(1) (2) (3) (4)

WTP: data 6.44 4.32 4.17 1.84
(4.87) (4.68) (4.30) (2.86)

Model predictiona 6.35 4.19 4.13 1.73
(3.28) (2.94) (2.90) (2.10)

(i) Order effectb 1.18 1.02 0.01 -0.21
(0.53) (0.65) (0.23) (0.17)

(ii) Learning over roundsb 0.64 -0.09 0.06 0.31
(0.59) (0.27) (0.13) (0.36)

(iii) Conformityb 3.91 2.21 2.60 1.31
(1.93) (1.71) (2.05) (1.69)

(iv) % playing a dominated strategy w/ free infob 0.26 0.03 0.30 0.24
(0.77) (0.15) (0.52) (0.60)

(v) Curiosityb 1.35 1.38 0.95 0.52
(1.40) (1.70) (1.30) (1.11)

(vi) Risk aversionb -1.62 -0.32 -0.44 0.27
(1.45) (0.38) (0.44) (0.31)

Total Explained by factors (i)-(vi)c 5.23 3.49 3.22 1.62
(2.99) (2.67) (2.63) (2.08)

Residual WTPd 1.20 0.83 0.94 0.21
(3.60) (3.78) (2.99) (2.12)

Theoretical predictione [5.2, 8] [0, 0.24] 0.67 0.00

# of observations 567 513 576 513
# of subjects 63 57 64 57

Notes: Decompositions are based on the random effects Tobit model for each treatment (columns 2–5 in Table 5). The table reports the sample
average, while standard deviations are in parentheses.
a. “Model prediction” is the predicted value of WTP based on the corresponding estimated model, assuming that unobserved error terms are equal
to zero. The predicted values are censored to be in [0, 15].
b. The WTP explained by the corresponding factor is the difference between the model prediction with and without that factor. The former
is predicted from the current values of all variables; the latter is calculated by setting the relevant variable value to zero (for “Order effect,”
“Conformity,” “% playing a dominated strategy w/ free info,” or “Curiosity”) or setting the relevant variable to the counterfactual value (for “Risk
aversion,” the risk aversion measure is set to the risk-neutral value; for “Learning over round,” “Round” is set to be the last round, “Round” = 10).
c. “Total Explained by factors (i)-(vi)” is the total WTP explained by the six factors above. Note that it is not the sum of the explained WTP of the
six factors because of the censoring at 0 and 15.
d. “Residual WTP” is the difference between the observed WTP and the total WTP explained by the six factors.
e. The theoretical predictions are for risk neutral subjects.

learning, or the difference between the prediction with the true variable values and the prediction

under the counterfactual, accounts for between −0.09 to 0.64 points of WTP.

(iii) Conformity. Conformity measures the extent to which subjects positively respond to their

beliefs about others’ WTP, WTP Guess. We find that increasing WTP Guess by one point

raises a subject’s WTP by 0.78 points under IA and 1.01 points under DA (Table 5, column 1).

Although our theory predicts a negative correlation between a subject’s own WTP andWTP Guess,

out counterfactual considers a zero correlation. That is, in the counterfactual, WTP Guess has no

effect on WTP. Conformity can explain 1.31 to 3.91 points of the observed WTP, or 51% to 71%,

indicating that it is the single most important factor in explaining the observed WTP.
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(iv) % playing a dominated strategy with free info. This measure is the proportion of time that

a subject plays a dominated strategy in rounds with free information. The results in Table 5 show

that it increases a subject’s WTP.

To quantify its contribution, we consider the counterfactual in which no one plays a dominated

strategy (i.e., setting the variable to zero). We then calculate the difference between the model

prediction with the true variable values and the prediction under the counterfactual. The results in

Table 6 show that the effect is between 0.03 and 0.30 points.

(v) Curiosity. The regression in column (1) of Table 5 shows that a one-point increase in WTP for

non-instrumental information is associated with 0.39 additional points of WTP in each round. We

consider the counterfactual where WTP for information in the school choice game is not associated

with curiosity by setting the coefficient on curiosity to zero. We find that curiosity explains 0.52 to

1.38 points of the observed WTP, or 21% to 32%, indicating that this is the second most important

factor in explaining the observed WTP.

(vi) Risk aversion. To measure risk aversion, we use a subject’s switching point in the Holt-

Laury lottery choice game. In general, our results show that being more risk averse is correlated

with a lower WTP, which is consistent with our theoretical predictions, albeit insignificantly so

(Table 5, column 1). However, this correlation is heterogeneous across treatments, and becomes

positive in the DA OtherValue treatment.

We consider the counterfactual where every subject is risk neutral (i.e., switching at the 5th

choice in the Holt-Laury game), which requires us to change about 78% of our subjects from risk

averse to risk neutral. Doing so, we find that risk aversion decreases WTP by 0.32 to 1.62 points,

with the exception that it increases WTP in the DA OtherValue treatment.

Together, these findings can be summarized in the following result.

Result 6 (Decomposing WTP). The six factors combined explain 77–88% of the observed WTP

for information; conformity alone explains 51–71% of the WTP, while curiosity explains 21–32%.

Overall, after accounting for the WTP explained by the six factors, the remaining WTP is

similar to the level predicted by our theory for our two DA treatments. However, it is below

the theoretical prediction level for the IA OwnValue treatment, and slightly above the theoretical

prediction for the IA OtherValue.
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5.3 Heterogeneity: Under-Acquisition of Information

While the subjects on average over-acquire information relative to the theoretical predictions, a

small fraction of them never acquire information. We define that a subject has zero demand for

information if her WTP is zero in every round. We are interested in how these subjects use freely

provided information, which may have implications for policy intervention: a strong case for in-

formation provision can be made if they use freely provided information as efficiently as others.

Let ZeroDi equal to 1 if subject i has zero demand for information and 0 otherwise. Overall,

44 subjects (15% of our sample) have ZeroDi = 1.18 As zero demand in DA OtherValue coincides

with the theoretical predictions, we exclude the treatment in subsequent analysis.

First, we investigate the characteristics of those with zero demand in a linear probability model

(Table D.8 in Appendix D) and we find that curiosity is negatively and significantly correlated with

zero demand, whereas none of the demographics is robustly correlated with it.

Second, we examine whether subjects with zero demand use free information less efficiently

than others, taking advantage of a unique design feature: every subject plays the same game for 10

rounds with free information provision.

Figure 3: Effects of Information Provision and Costly Acquisition on Revenue by Subject Type
Notes: Revenue is calculated relative to the case in which the information in question is not provided or not possible to be acquired. The actual

costs paid for information acquisition are not considered here. A subject has “zero demand” for information if her WTP is zero in every round.

For each subject type, zero-demand versus others, Figure 3 shows the effect of information

provision or costly information acquisition on subjects’ revenue from the school choice game in

each treatment (without considering information costs). Specifically, the effect is the difference be-

tween a subject’s revenue from information provision (white bar) or costly information acquisition

(blue bar) and that from the corresponding no-information plays.
18 ZeroDi = 1 for 8% of the subjects in IA OwnValue, 10% in IA OtherValue, 15% in DA OwnValue, and 28% in

DA OtherValue.
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As Figure 3 shows, zero-demand subjects use freely provided information as effectively as oth-

ers (two-sided p > 0.43 when the treatments are pooled or separated). However, when information

is costly, zero-demand subjects obtain significantly lower revenue than others (treatments pooled:

two-sided p < 0.005; individual treatment: two-sided p < 0.08 in all cases except IA OwnValue).

These results are robust even after we account for information acquisition costs incurred by sub-

jects with positive demand (Figure D.1), as information costs are on average low (Table D.7).

While these findings rely on a small subsample, they suggest that free information provision

benefits zero-demand subjects, as they use information as effectively as others. Even a small cost

of information acquisition can make such subjects worse off due to their under-acquisition.

5.4 Welfare Analysis: Payoffs and Allocative Efficiency

Our final set of analyses examine the welfare effects of both information provision by an educa-

tional authority and information acquisition by subjects. We use two welfare measures: the payoffs

that subjects receive in the experiment and the efficiency of the allocation outcome. An allocation

is deemed efficient if a subject, who values school B at 110, is matched with school B whenever

at least one such subject exists.

Table 7: Effects of Information Acquisition & Provision in the Experiment
Information Provision Information Acquisition (Observed)

Net payoff gain Efficiency gain (%) Net payoff Efficiency Prob of info Costs
Theoretical Observed Theoretical Observed gain gain (%) acquired paid

(1) (2) (3) (4) (5) (6) (7) (8)

IA OwnValue 9.6 8.16*** 32 24*** 2.29** 14*** 0.44 2.25
(0.64) (1.90) (0.70) (2.10)

IA OtherValue 0 -0.01 0 2 0.10 4 0.28 1.29
(1.21) (3.02) (0.97) (3.05)

DA OwnValue 5.24 4.26** 19 13** -0.28 3 0.3 1.35
(1.60) (4.69) (0.72) (2.06)

DA OtherValue 0 0.20 0 1 -0.98 0 0.14 0.48
(1.46) (2.87) (1.07) (2.05)

Notes: Detailed estimates are in Tables E.1 and E.2. Given a treatment, the welfare effect measures the difference between the payoff (per subject,
per round) with free information provision (or costly information acquisition) and the payoff without the information in question, net of the costs of
information acquisition paid in the experiment. The effect on allocation efficiency, reported in percentage points, is similarly calculated at the game
level; each game outcome is either efficient or inefficient. The theoretical effects are derived for risk-neutral subjects. Standard errors allowing
arbitrary correlation within a session are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01, for testing the null of no effect.

When studying information provision, we consider the three standard information structures:

(i) ex ante, where everyone knows the distribution of school B values but not its realization, (ii) in-

terim, where everyone knows the distribution of schoolB values and her own value, but not others’

values, and (iii) ex post, where everyone’s school B value is common knowledge. An information

structure is changed from ex ante to interim with free information in the OwnValue treatments, and
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from interim to ex post in the OtherValue ones. The theoretical effects of information provision for

risk-neutral subjects are summarized in Table 7, leading to the following hypothesis:

Hypothesis 6 (Effects of Information Provision). “Providing OwnValue” (i.e., transforming ex

ante into interim) increases subject payoffs and allocation efficiency under either mechanism, but

“providing OtherValue” (i.e., transforming interim to ex post) has no effect on subject payoffs or

allocation efficiency under IA or DA.

Given our experimental design, we can perform within-subject tests of the effects of informa-

tion provision for each treatment. For instance, in IA OwnValue, we calculate each subject’s payoff

difference between ex ante and interim, because she plays the game knowing only the distribution

(ex ante) and the game knowing her own school B value (interim) in the free information rounds

within the same treatment. We then test if this difference is zero.

Result 7 (Effects of Information Provision). (i) “Providing OwnValue” increases subject payoffs

and the fraction of efficient allocations under both IA and DA; (ii) “providing OtherValue” has no

effect on subject payoffs or allocation efficiency under IA or DA.

Support: Columns (2) and (4) in Table 7 show the results. Providing information on OwnValue

leads to an extra payoff of 8.16 under IA and 4.26 under DA, and increases the fraction of efficient

allocation by 24 percentage points under IA and 19 percentage points under DA, all significant at

the 5% level. Under either mechanism, providing information on OtherValue results in effects that

are close to zero and statistically insignificant.

Regarding the effects of information acquisition with low costs, we expect outcomes to fall

between no information and free information provision. This is because not everyone succeeds in

information acquisition (column 7, Table 7). Our experiment indeed adopts a low-cost technology,

as a subject on average pays half of her WTP if and only if information is successfully acquired.19

The actual costs paid are between 0.48–2.25 (column 8). This leads to our final hypothesis.

Hypothesis 7 (Effects of Costly Information Acquisition). “Acquiring OwnValue” increases sub-

ject payoffs and the fraction of efficient allocations under either mechanism, but “acquiring Oth-

erValue” has no effect on subject payoffs or allocation efficiency for IA or DA.

Result 8 (Effects of Information Acquisition). (i) “Acquiring OwnValue” improves both subject

payoffs and allocation efficiency for IA but not for DA; (ii) “Acquiring OtherValue” does not affect

either subject payoffs or allocation efficiency for IA or DA.
19Given the experimental design, when one’s WTP is w, the expected cost of information acquisition is w2/30.
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Support: Columns (5) and (6) in Table 7 report the results. “Acquiring OwnValue” under IA

increases subject payoffs by 2.29 and the fraction of efficient allocations by 14 percentage points,

both significant at the 5% level. “Acquiring OwnValue” under DA has insignificant effects on

either welfare measures, so does “Acquiring OtherValue” under IA and DA.

Results 7 and 8 together show that costly information acquisition can only achieve a small

fraction of the benefits of information provision, even when the information cost is low. We may

expect that subject payoffs can be even lower if the information acquisition is more costly.

This motives us to consider broader information provision policies, e.g., providing both Own-

Value and OtherValue. Indeed, the analysis in Appendix E.3 shows that such a policy under IA or

DA can achieve a welfare level close to the efficient outcome in interim, or equivalently ex post. A

key component of this welfare gain is that providing OtherValue can reduce wasteful investments

in information acquisition, especially when students may invest up to their WTP. Importantly, this

waste reduction extends to DA under which students should have a zero WTP for such information.

Lastly, we investigate how OtherValue, when being exogenously provided or endogenously ac-

quired, affects the rate of dominant strategy play in a strategy-proof mechanism relative to interim.

Recall that knowing OtherValue in our setting helps subjects better assess admission chances at

all schools. Under DA in interim, admission chances conditional on truth-telling are always non-

degenerate, or in (0, 1), because of the post-application lottery, and therefore truth-telling is the

unique equilibrium (Fack, Grenet and He 2019). Ex post, 84% of the subjects across all possible

type compositions in the game have truth-telling as the unique equilibrium strategy.20

Result 9 (Effects of Information about OtherValue on Truth-telling in DA). When OwnValue is

private information, the proportion of truth-telling subjects under DA remains constant whether

OtherValue is exogenously provided or endogenously acquired.

Support: This result can be obtained from within-subject analyses of the DA OtherValue treat-

ment. The fraction of truth-telling subjects is 91% in interim and 92% when OtherValue is freely

provided or endogenously acquired (although they can choose not to acquire it). Furthermore, in

interim in the DA OwnValue treatment when OwnValue is freely provided, the truth-telling rate

is 92%. There are no significant differences between any pair of these statistics. Appendix D.4

provides additional analyses.

20Ex post, truth-telling is not the unique equilibrium strategy for two types of subjects: those with a low B value
while her two opponents have a high B value and those with a high B value while her two opponents have a low B
value. Truth-telling being the unique equilibrium strategy for all or most of the subjects may also explain the high rate
of truth-telling in our data relative to other studies that often have multiple equilibria under DA.
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Result 9 does not contradict the findings in Pais and Pintér (2008). In their setting, the least

informative condition, called “zero” information, has OwnValue as private information but lacks a

common prior and information on schools’ priorities. Other information conditions provide more

information that can help subjects form a better assessment of admission chances: subjects’ own

school priorities (“low” information), all subjects’ school priorities (“partial” information), and

preferences and priorities of all subjects (“full” information). They find that truth-telling under

DA decreases from zero to any other information condition whereas none of the other pairwise

comparisons is significant. This finding can be explained by the existence of multiple equilibria

under all information conditions except zero. Specifically, certain schools will be out of her reach

if her priorities at those schools are too low; with this information, she can rank arbitrarily these

schools in her ROL without any payoff loss.21 A school rarely, if ever, becomes out of reach for a

student when schools rank students solely by a post-application lottery as in our setting.

6 Conclusion

We present experimental evidence that the two most popular school choice mechanisms, DA and

IA, provide heterogeneous degrees of incentives for students to acquire information on their own

and others’ preferences. Information on own preferences is about one’s match values at schools,

while that on others’ preferences helps her better assess her admission chances.

We first find is that better information about a subject’s own preferences improves both student

payoffs and the student-school match efficiency, in line with recent calls for better information

provision on school quality. In practice, the information about a student’s own preferences can be

provided through accessible presentation materials on school offerings and performance (Hastings

and Weinstein 2008), and by knowledgeable guidance counselors and teachers (Sattin-Bajaj 2014).

We also show that information provision on others’ preferences, or information about admis-

sion chances, reduces wasteful investments. In practice, information provision about admission

chances can be implemented through publicizing application behaviors, such as publishing data

on student application statistics in past years (Chen, Jiang and Kesten forthcoming), or publishing

applicants’ actions and allowing students to revise their own applications upon observing others’

actions. The latter information policy is already adopted in the school choice context in Amster-

dam (De Haan, Gautier, Oosterbeek and Van der Klaauw 2015) and Wake County, North Carolina

(Dur, Hammond and Morrill 2018), as well as in the college admissions context in Inner Mongolia

21This pattern is documented in the Australian college admissions by Artemov, Che and He (2017) who also provide
a theoretical investigation.
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through a dynamically updated web interface (Gong and Liang 2017).

Policymakers should use caution, however, when publishing information on others’ actions.

Past experiments demonstrate that, when others’ strategies are not optimal, participants who do

not understand the properties of the matching mechanism might copy those suboptimal strategies

(Guillen and Hakimov 2017), resulting in a potentially negative effect of information provision. In

this case, policymakers may consider explaining the properties of the mechanism to guide partici-

pants’ behavior (Guillen and Hakimov 2018).

Lastly, a substantial fraction of our subjects have information preferences, such as curiosity

and zero demand for information. This implies that theories of information acquisition in market

design may improve its behavioral predictions by incorporating such preferences.
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Çelen, Boǧaçhan and Kyle Hyndman, “Social Learning Through Endogenous Information
Acquisition: An Experiment,” Management Science, 2012, 58 (8), 1525–1548.

Chen, Yan and Tayfun Sönmez, “School Choice: An Experimental Study,” Journal of Economic
Theory, 2006, 127, 202–231.

and Yinghua He, “Information Acquisition and Provision in School Choice: A Theoretical
Investigation,” 2018. University of Michigan Manuscript.
, Ming Jiang, and Onur Kesten, “An Empirical Evaluation of Chinese College Admissions

Reforms Through A Natural Experiment,” PNAS, forthcoming.
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Appendix A Model setup and equilibrium analysis with risk-neutral stu-
dents

A.1 The Setup

In addition to the model setup in the main text, student preferences are strict: For any pair of distinct
schools s and t in S, vi,s 6= vi,t for all i. We therefore define strict ordinal preferences P on S such
that sPit if and only if vi,s > vi,t. We also augment the set of all possible strict ordinal preferences
P with a “null preference” P φ ≡ ∅ denoting that one has no information on her ordinal preference,
expressed as P̄ = P ∪∅ . The distribution of V conditional on P is denoted by F (V |P ), while the
probability mass function of P implied by F is G (P |F ) (P is finite). We impose a full-support
assumption on G (P |F ), i.e., G (P |F ) > 0, ∀P ∈ P , indicating that every strict ordinal preference
ranking is possible given the distribution of cardinal preferences. Necessarily, G(P φ|F ) = 0.

In our model, the value of the outside option and the distribution of preferences, F (V ) and
thus G(P |F ), are always common knowledge. However, in contrast to previous models of school
choice, we introduce an information-acquisition stage for each i to learn her own preferences (Pi
and/or Vi) or others’ preferences (V−i) before entering the mechanism. Because of the independent-
private-value nature, learning about others’ preferences is only for the purpose of gaming or com-
peting with other students. The process and technology for information acquisition for own (resp.
others’) values are depicted in Figure A.1 (resp. A.2), both reproduced from Chen and He (2018).

To acquire information, student i may pay δ to acquire a signal of V−i, ωi,3 ∈ V̄(|I|−1). With
probability d (δ), she learns perfectly, ω3,i = V−i; with probability 1 − d (δ), ω3,i = V φ

−i, i.e., she
learns nothing.

The technology has the following properties: d (0) = 0, limδ→∞ d (δ) = 1, d′ > 0, d′′ < 0,
and d′ (0) = ∞. The cost for information acquisition is e (δ) such that e (0) = 0, e′, e′′ > 0 and
e′ (0) <∞. Similarly, we restrict our attention to δ ∈

[
0, δ̄
]
, where e

(
δ̄
)

= v.
Information acquisition is again covert. We focus on a symmetric Bayesian Nash equilibrium,

(δ∗ (V ) , σ̄∗ (ω3, V )), where:

(i) A (possibly mixed) strategy σ̄∗ (ω3, V ) : V̄(|I|−1) × V → ∆ (P), such that

σ̄∗ (ω3,i, Vi) ∈ arg max
σ̄

{∫ ∫
u (Vi, σ̄, σ̄

∗ (ω3,−i, V−i)) dF (V−i|ω3,i) dK
(
ω3,−i|δ∗−i

)}
.

That is, given one’s own signal ω3,i, everyone plays a best response, recognizing that every-
one has paid δ∗ to acquire information (denoted as δ∗−i). We further define the value function
given

(
ω3,i, δ

∗
−i
)

and Vi as:

Φ
(
Vi, ω3,i, δ

∗
−i
)

= max
σ̄

{∫ ∫
u (Vi, σ̄, σ̄

∗ (ω3,−i, V−i)) dF (V−i|ω3,i) dK
(
ω3,−i|δ∗−i

)}
.
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Nature draws cardinal preferences Vi for i,

which implies ordinal preferences Pi.

Knowing neither Vi nor Pi, i decides whether

to acquire info on ordinal preferences Pi.

No (α = 0)

i enters the school choice game

knowing only Vi’s distribution.

Yes (α > 0)

i chooses an amount to pay

for acquiring info on Pi: α.

Info on Pi not acquired

w/ prob. 1− a(α)

Info on Pi acquired

w/ prob. a(α)

Having learned Pi, i decides

whether to acquire info on Vi.

No (β = 0)

i enters the school choice

game only knowing Pi.

Yes (β > 0)

i chooses an amount to pay

for acquiring info on Vi: β.

Info on Vi not acquired

w/ prob. 1− b(β)

Info on Vi acquired

w/ prob. b(β)

i enters the school choice

game knowing Vi.

Figure A.1: Acquiring Information on One’s Own Preferences.

Nature draws cardinal preferences for everyone,

but Vi is i’s private information.

i decides whether to acquire information

on others’ preferences V−i.

No (δ = 0)

i enters the school choice game

knowing only V−i’s distribution.

Yes (δ > 0)

i chooses an amount to pay

for acquiring info on V−i: δ.

Info on V−i not acquired

w/ prob. 1− d(δ)

Info on V−i acquired

w/ prob. d(δ)

i enters the school choice

game knowing V−i.

Figure A.2: Acquiring Information on Others’ Preferences.
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(ii) Acquisition of information on others’ preferences δ∗ (V ) : V̄ →
[
0, δ̄
]
, ∀V :

δ∗ (Vi) ∈ arg max
δ

{
d (δ)

∫
Φ
(
Vi, V−i, δ

∗
−i
)
dF (V−i) + (1− d (δ)) Φ

(
Vi, V

φ
−i, δ

∗
−i

)
− e (δ)

}
.

Here, δ∗ (Vi) is the optimal information acquisition strategy.

A.2 Equilibrium analysis with risk neutral students

Given the payoff table used in the experiment, Table 1 in section 4, this appendix derives the
equilibrium strategies and payoffs under the assumption that every student is risk neutral. Note that
we will be using the dollar amount rather than points in our derivations. We also vary information
structure and derive the incentive to acquire information. The results on risk-averse students are
presented in Appendix B. Throughout, students do not know the realization of tie breakers when
playing the game. We consider the following 5 scenarios where the information structure differs:

(1) Complete information about preferences (ex post): Everyone knows her own and others’
realized preferences;

(2) Incomplete information about preferences (interim): Everyone knows her own realized pref-
erences but only the distribution of others’ preferences;

(3) Unknown preferences (ex ante): Everyone only knows the distribution of her own and others’
preferences;

(4) Unknown preferences (Scenario 3) with acquisition of information about one’s own prefer-
ences;

(5) Incomplete information (Scenario 2) with acquisition of information about others’ prefer-
ences.

The literature on school choice, or on matching in general, focuses on the first three scenarios.
By introducing scenarios (4) and (5), we extend the literature by endogenizing the acquisition of
information about one’s own or on others’ preferences.

In the following, we calculate the expected payoff that is evaluated at ex ante (i.e., from the
time point before the realization of the preferences).

A.3 Scenario (1): Complete Information about Preferences (ex post)

IA: Table A.1 iterates through each realization of preference profiles and compute the symmetric
equilibrium strategies and payoffs under IA.

Ex ante, before the realization of the preferences, given that they know they will play the game
with complete information under IA, the expected payoff of each student is:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

(
7

10

)
1

25

)
=

4

5

326

750
+

1

5

681

750
=

397

750
.
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Table A.1: Symmetric equilibrium under IA given each realization of preference profiles

Realization of Probability Action given realized type Payoff given realized type
Preference Realized (1, 0.1, 0) (1, 1.1, 0) (1, 0.1, 0) (1, 1.1, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

64/125 (a, b, c) - 11/30 -

(1, 1.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

48/125 (a, b, c) (b, a, c) 1/2 11/10

(1, 1.1, 0)
(1, 1.1, 0)
(1, 0.1, 0)

12/125 (a, b, c) (b, a, c) 1 11/20

(1, 1.1, 0)
(1, 1.1, 0)
(1, 1.1, 0)

1/125 -
(a, b, c) w/ prob. 3/7a

(b, a, c) w/ prob. 4/7a - 7/10

a. We may allow one student to play (a,b,c) and the other two to play (b,a,c), which is a pure-strategy Nash
equilibrium. If everyone has the same probability to play (a,b,c), the expected payoff of everyone is also 7/10.

DA: Before looking at equilibrium, we use Table A.2 to clarify the assignment probabilities given
students’ actions. Note that we always use DA with single tie-breaking.

Given any realization of the preferences, Table A.3 presents the equilibrium strategies and
payoffs under DA.

Ex ante, before the realization of the preferences, given that they know they will play the game
with complete information under DA, the expected payoff to each student is:

4

5

(
11

30

16

25
+

31

60

8

25
+

2

3

1

25

)
+

1

5

(
22

30
∗16

25
+

43

60

8

25
+

(
21

30

)
1

25

)
=

365

750
.

A.4 Scenario (2): Incomplete Information about Preferences (interim)

IA: When one’s own preferences are private information and the distribution of preferences is
common knowledge, there is a unique symmetric equilibrium under IA:

σ
(2)
IA ((1, 1.1, 0)) = (b, a, c) ;σ

(2)
IA ((1, 0.1, 0)) = (a, b, c) .

For any given student, there are three possibilities of opponents’ types:

Types Probability Others’ Action Profile

(1, 0.1, 0) (1, 0.1, 0) 16/25 (a, b, c) (a, b, c)
(1, 1.1, 0) (1, 0.1, 0) 8/25 (b, a, c) (a, b, c)
(1, 1.1, 0) (1, 1.1, 0) 1/25 (b, a, c) (b, a, c)

For a type-(1, 0.1, 0) student, it is a dominant strategy to play (a, b, c). Conditional on her type,
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Table A.2: Assignment probability under DA given each strategy profile
Probability of Being Assigned to Each School if

Submitted Playing (a, b, c) Playing (b, a, c)
List a b c a b c

(a, b, c)
(a, b, c)
(a, b, c)

1/3 1/3 1/3 - - -

(b, a, c)
(a, b, c)
(a, b, c)

1/2 1/6 1/3 0 2/3 1/3

(b, a, c)
(b, a, c)
(a, b, c)

2/3 0 1/3 1/6 1/2 1/3

(b, a, c)
(b, a, c)
(b, a, c)

- - - 1/3 1/3 1/3

Table A.3: Symmetric equilibrium under DA given each realization of preference profiles
Realization of Probability Action given realized type Payoff given realized type

Preference Realized (1, 0.1, 0) (1, 1.1, 0) (1, 0.1, 0) (1, 1.1, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

64/125 (a, b, c) - 11/30 -

(1, 1.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

48/125 (a, b, c) (b, a, c)
1
2+

1
60

= 31/60

2
3
11
10

= 22/30

(1, 1.1, 0)
(1, 1.1, 0)
(1, 0.1, 0)

12/125 (a, b, c) (b, a, c) 2/3
11
20+

1
6

= 43/60

(1, 1.1, 0)
(1, 1.1, 0)
(1, 1.1, 0)

1/125 - (b, a, c) - 21/30

her equilibrium payoff is:

16

25

(
1

3

(
1 +

1

10
+ 0

))
+

8

25

1

2
+

1

25
=

326

750
.

If a type-(1, 0.1, 0) student deviates to (b, a, c), she obtains:

16

25

(
1

10

)
+

8

25

(
1

2

(
1

10
+ 0

))
+

1

25

(
11

30

)
=

71

750
.
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For a type-(1, 1.1, 0) student, given others follow σ
(2)
BM , playing (b, a, c) results in a payoff of:

16

25

11

10
+

8

25

(
1

2

(
11

10
+ 0

))
+

1

25

(
1

3

(
11

10
+ 1 + 0

))
=

681

750
.

If a type-(1, 1.1, 0) student deviates to (a, b, c), she obtains:

16

25

(
1

3

(
11

10
+ 1 + 0

))
+

8

25

(
1

2
(1 + 0)

)
+

1

25
(1) =

486

750
.

It is therefore not a profitable deviation. Furthermore, she has no incentive to deviate to other
rankings such as (c, a, b) or (c, b, a).

Before the realization of their own preferences while knowing that they will play the game
under DA with incomplete information, the expected payoff to every student is:

326

750

4

5
+

681

750

1

5
=

397

750
.

Remark A.1. Note that the two scenarios, (1) and (2), result in the same payoffs under IA.

Remark A.2. In neither scenario is a type-(1, 0.1, 0) student ever matched with school B as long
as there is at least one type-(1, 1.1, 0) student.

DA: When one’s own preferences are private information and the distribution of preferences is
common knowledge, there is a unique equilibrium under DA:

σ
(2)
DA ((1, 1.1, 0)) = (b, a, c) ;σ

(2)
DA ((1, 0.1, 0)) = (a, b, c) .

For any given student, there are three possibilities of opponents’ types:

Types Probability Others’ Action Profile

1 (1, 0.1, 0) (1, 0.1, 0) 16/25 (a,b, c) (a, b, c)
2 (1, 1.1, 0) (1, 0.1, 0) 8/25 (b, a,c) (a, b, c)
3 (1, 1.1, 0) (1, 1.1, 0) 1/25 (b, a,c) (b, a, c)

For a type-(1, 0.1, 0) student, it is a dominant strategy to play (a, b, c). Conditional on her type, her
equilibrium payoff is:

16

25

(
1

3

(
1 +

1

10
+ 0

))
+

8

25

(
1

2
+

1

60
+ 0

)
+

1

25

(
2

3
+ 0

)
=

320

750
.

If a type-(1, 0.1, 0) student deviates to (b, a, c), she obtains:

16

25

(
2

30
+ 0

)
+

8

25

(
1

20
+

1

6
+ 0

)
+

1

25

(
1

3

(
1 +

1

10
+ 0

))
=

95

750
.
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For a type-(1, 1.1, 0) student, given others follow σ
(2)
DA, playing (b, a, c) results in a payoff of:

16

25

(
2

3

11

10

)
+

8

25

(
1

2

11

10
+

1

6

)
+

1

25

(
1

3

(
11

10
+ 1 + 0

))
=

545

750
.

If a type-(1, 1.1, 0) student deviates to (a, b, c), she obtains:

16

25

(
1

3

(
11

10
+ 1 + 0

))
+

8

25

(
1

2
+

11

60

)
+

1

25

(
2

3

)
=

520

750
.

It is therefore not a profitable deviation. Furthermore, she has no incentive to deviate to other
rankings such as (c, a, b) or (c, b, a).

The expected payoff to every student, before knowing their own true preferences, is:

320

750

4

5
+

545

750

1

5
=

365

750
.

Remark A.3. Note that the two scenarios, (1) and (2), result in the same payoffs under DA.

Remark A.4. In both scenarios, there is a positive probability that a type-(1, 0.1, 0) student is
matched with school B when there is at least one type-(1, 1.1, 0) student.

A.5 Scenario (3): Unknown Preferences (ex ante)

IA: Under IA, the unique symmetric equilibrium is that everyone plays σ(3)
IA = (a, b, c). The

expected payoff of this strategy is:

1

3

(
1 +

(
1

5

11

10
+

4

5

1

10

)
+ 0

)
=

13

30
=

325

750
.

If a student deviates to (b, a, c), her payoff is:(
1

5

11

10
+

4

5

1

10

)
= 0.3 =

225

750
.

Remark A.5. In Scenario (2), the payoff is 397
750

which is higher than that of Scenario (3), 225
750

.

Remark A.6. Comparing Scenarios (1), (2), and (3), we can improve the social welfare by making
it easier for students to learn their preferences and then transforming (3) into (2) or (1) under IA.

DA: The unique symmetric equilibrium under DA is that everyone plays σ(3)
DA = (a, b, c).

The expected payoff of this strategy is:

1

3

(
1 +

(
1

5

11

10
+

4

5

1

10

)
+ 0

)
=

13

30
=

325

750
.
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If a student deviates to (b, a, c), her payoff is:

1

5

(
2

3

11

10

)
+

4

5

(
2

3

1

10

)
= 0.2 =

150

750
.

Remark A.7. In Scenario (2), the payoff is 365
750

which is higher than that of Scenario (3), 325
750

.

Remark A.8. Comparing Scenarios (1), (2), and (3), we can improve the social welfare by making
it easier for students to learn their preferences and then transforming (3) into (2) or (1) under DA.

Remark A.9. The benefit of providing free information about own preferences is higher under IA.

Remark A.10. In Scenarios (3), IA achieves the same outcome as DA.

Next, we discuss students’ incentives to acquire information about one’s own preferences.

A.6 Scenario (4): (3) + acquisition of information about one’s own preferences

IA: Now suppose that students know only the distribution of their own and others’ preferences.
We consider their incentives to acquire information about their own preferences.

After acquiring information, both informed and uninformed students know how many others
are informed. However, informed students know their own preferences, while uninformed students
only know the distribution of preferences. Therefore, we consider willingness to pay (WTP) for
information about own preferences in each of the three cases:

wown0 : when no other informed students;

wown1 : when there is another informed student;

wown2 : when there are two other informed students.

Table A.4 summarizes the equilibrium strategies and payoffs for informed and uninformed players.

Table A.4: Willingness to pay for information about own payoffs under IA
# of Players Strategy: Strategy: Informed Ex Ante Payoff Willingness to

Informed Uninformed Uninformed (1,0.1, 0) (1, 1.1, 0) Informed Uninformed pay for info

0 3 (a, b, c) - - - 325
750

60
750

1 2 (a, b, c) (a, b, c) (b, a, c) 385
750

335
750

49.5
750

2 1 (a, b, c) (a, b, c) (b, a, c) 384.5
750

358
750

39
750

3 0 - (a, b, c) (b, a, c) 397
750 -

In the current setting, we focus on overt information acquisition. Namely, all students, in-
formed and uninformed, know how many students in total are informed. Note that, for uninformed
students, knowing or not knowing how many students are informed does not change their strategy.
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Our overt-information-acquisition approach possibly provides a lower bound on information ac-
quisition regarding one’s own preferences. That is, one always has a greater incentive to acquire
information covertly and choose to make it public only if she finds it profitable. Besides, the infor-
mation acquisition in our setting is purely about one’s own preferences, while all other information
is costless.

When no other students are informed and a student acquires this information, the unique equi-
librium in the school choice game is:

(One) Informed : σ ((1, 1.1, 0)) = (b, a, c) and σ ((1, 0.1, 0)) = (a, b, c) ;

(Two) Uninformed : (a, b, c) ,

The informed student obtains an expected payoff:

1

5

11

10
+

4

5

(
1

3

(
1

10
+ 1 + 0

))
=

385

750
.

When she chooses not to acquire information, the game is returned to Scenario (3) and her
expected payoff is 325

750
. Therefore, given there is no other informed student, her WTP for the

information is:
wown0 =

385

750
− 325

750
=

60

750
.

If there is one informed student already, an additional student acquires this information, and
the game has two informed players and one uninformed. The unique equilibrium in this case is:

(Two) Informed : σ ((1, 1.1, 0)) = (b, a, c) and σ ((1, 0.1, 0)) = (a, b, c) ;

(One) Uninformed : (a, b, c) .

Informed students obtain an expected payoff:

1

5

(
1

5

1

2

11

10
+

4

5

11

10

)
+

4

5

(
1

5

1

2
+

4

5

11

30

)
=

384.5

750
.

If the student chooses not to acquire information, she plays against one informed and one unin-
formed players. The equilibrium is discussed above, and her payoff as an uninformed player is:

1

5

(
1

5

1

2
+

4

5

21

30

)
+

4

5

(
1

5

1

2
+

4

5

11

30

)
=

335

750

This implies that the WTP for information in this case is:

wown1 =
384.5

750
− 335

750
=

49.5

750
.

When the other two students are informed, if the third student also decides to acquire this
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information, the game turns into one with three informed players as in Scenario (2). We know that
her expected payoff is 397

750
. If she decides not to do so, she remains uninformed and plays against

two informed players. The equilibrium is discussed above and her expected payoff is:

1

5

(
16

25

(
1

3

(
11

10
+ 1 + 0

))
+

8

25

(
1

2
(1 + 0)

)
+

1

25
(1)

)
+

4

5

(
16

25

(
1

3

(
1

10
+ 1 + 0

))
+

8

25

(
1

2
(1 + 0)

)
+

1

25
(1)

)
=

358

750

Therefore, the WTP is:

wown2 =
397

750
− 358

750
=

39

750
.

Remark A.11. The WTP depends on the number of informed students. When the cost is lower
than wown2 , all students choose to be informed.

Remark A.12. When more students are informed, the incentive to acquire information is lower.

Remark A.13. Information acquisition has externalities. Namely, when more students are in-
formed, the payoffs to uninformed students are higher.

Remark A.14. If we only elicit one number for the WTP, a student reports a number in
[

39
750
, 60

750

]
,

because her belief is a probability distribution over the three possible realizations, i.e., playing
against another 0-2 informed students.

DA: Now we consider DA. Students only know the distribution of their own and others’ prefer-
ences. Table A.5 summarizes the equilibrium strategies and expected payoffs for informed and
uninformed players under DA.

Table A.5: Willingness to Pay for Information about Own Payoffs under DA
# of Players Strategy: Strategy: Informed Ex Ante Payoff Willingness to

Informed Uninformed Uninformed (1,0.1, 0) (1, 1.1, 0) Informed Uninformed pay for info

0 3 (a, b, c) - - - 325
750

5
750

1 2 (a, b, c) (a, b, c) (b, a, c) 330
750

342.5
750

5
750

2 1 (a, b, c) (a, b, c) (b, a, c) 347.5
750

360
750

5
750

3 0 - (a, b, c) (b, a, c) 365
750 -

When no other students are informed and a student acquires this information, the unique equi-
librium in the school choice game is:

(One) Informed : σ ((1, 1.1, 0)) = (b, a, c) and σ ((1, 0.1, 0)) = (a, b, c) ;

(Two) Uninformed : (a, b, c) ,
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The informed student obtains an expected payoff:

1

5

(
11

10

2

3

)
+

4

5

(
1

3

(
1

10
+ 1 + 0

))
=

330

750
.

If she chooses not to acquire information, the game is returned to Scenario (3) and her expected
payoff is 325

750
. Therefore, given there is no other informed student, her WTP for the information is:

wown0 =
330

750
− 325

750
=

5

750
.

If there is one informed student already, an additional student acquires this information, and
the game has two informed players and one uninformed. The unique equilibrium in this case is:

(Two) Informed : σ ((1, 1.1, 0)) = (b, a, c) and σ ((1, 0.1, 0)) = (a, b, c) ;

(One) Uninformed : (a, b, c) .

Informed students obtain an expected payoff:

1

5

(
1

5

(
1

2

11

10
+

1

6

)
+

4

5

(
11

10

2

3

))
+

4

5

(
1

5

(
1

2
+

1

60

)
+

4

5

(
11

30

))
=

347.5

750
.

If the student chooses not to acquire information, she plays against one informed and one unin-
formed players. The equilibrium is discussed above, and her payoff as an uninformed player is:

1

5

(
1

5

(
1

2
+

11

60

)
+

4

5

21

30

)
+

4

5

(
1

5

(
1

2
+

1

60

)
+

4

5

11

30

)
=

342.5

750

This implies that the WTP for information in this case is:

wown1 =
347.5

750
− 342.5

750
=

5

750
.

When the other two students are informed, if the third student also decides to acquire this
information, the game turns into one with three informed players as in Scenario (2). We know that
her expected payoff is 365

750
. If she decides not to do so, she remains uninformed and plays against

two informed players. The equilibrium is discussed above and her expected payoff is:

1

5

(
16

25

(
1

3

(
11

10
+ 1 + 0

))
+

8

25

(
1

2
+

11

60

)
+

1

25

(
2

3

))
+

4

5

(
16

25

(
1

3

(
1

10
+ 1 + 0

))
+

8

25

(
1

2
+

1

60

)
+

1

25

(
2

3

))
=

360

750

Therefore, the WTP is:

wown2 =
365

750
− 360

750
=

5

750
.
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Remark A.15. The WTP is independent of the number of informed students.

Remark A.16. Information acquisition has very large externalities.

Remark A.17. If we only elicit one number for WTP, a student reports 5
750

.

A.7 Scenario (5): (2) + acquisition of information about others’ preferences

IA: Now suppose everyone knows her own preferences but not others’, while the distribution of
preferences is common knowledge. With some abuse of terminology, a student is informed if
she knows the realization of others’ preferences and whether each student is informed or not. An
uninformed student knows her own preferences, but neither the others’ preference realizations nor
how many are informed.

Here, two pieces of information, i.e., other students’ preferences and whether they are informed
or not, are always acquired together. As we hypothesize that researching others’ preferences is
wasteful given independent preferences, we thus study cases where the incentives for wasteful
information acquisition is high.

Note that a type-(1, 0.1, 0) student has no incentive to acquire information. Therefore, the
discussion of information acquisition is conditional on one’s own type being (1, 1.1, 0).

WTP for information about others’ preferences can be similarly defined in the following three
cases:

wother0 : when no other informed students;

wother1 : when there is another informed student;

wother2 : when there are two other informed students.

Table A.6 summarizes the equilibrium strategies and expected payoffs for informed and unin-
formed players under IA.

Table A.6: Willingness to pay for information about others’ payoffs under IA
# of Players Expected Payoff Exp. Payoff to Type-(1,1.1,0) WTP for info

Informed Uninformed Informed Uninformed Informed Uninformed given type-(1,1.1,0)

0 3 - 397
750 - 681

750
9

750

1 2 398.8
750

396.1
750

690
750

676.5
750

0.6428
750

2 1 396.22857
750

398.54
750

677.14286
750

688.71
750 0

3 0 397
750 - 681

750 -

When there are no other informed students, the third student can stay uninformed and obtain 397
750

ex ante, or 681
750

conditional on being type (1, 1.1, 0), as in Scenario (2). If she acquires information
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about others and becomes informed, the school choice game has the following equilibrium:

(Two) Uninformed : σ ((1, 1.1, 0)) = (b, a, c) ;σ ((1, 0.1, 0)) = (a, b, c) ;

and the informed player’s strategies are summarized in Table A.7:

Table A.7: Equilibrium strategies of the informed player when others are uninformed under IA
Others’ Ex Ante Action: Informed Player Ex Post Payoff: Informed Player

Preferences Probability (1, 0.1, 0) (1, 1.1, 0) (1, 0.1, 0) (1, 1.1, 0)

(1, 0.1, 0)
(1, 0.1, 0) 16/25 (a, b, c) (b, a, c) 11/30 11/10

(1, 1.1, 0)
(1, 0.1, 0) 8/25 (a, b, c) (b, a, c) 1/2 11/20

(1, 1.1, 0)
(1, 1.1, 0) 1/25 (a, b, c) (a, b, c) 1 1

The expected payoff to the informed player is:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

1

25

)
=

4

5

326

750
+

1

5

690

750
=

398.8

750
.

Therefore, conditional on being type (1, 1.1, 0), the WTP is:

wother0 =
690

750
− 681

750
=

9

750

The ex ante payoff to uninformed players, given that there is one informed student, is:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

11

20

1

25

)
=

4

5

326

750
+

1

5

676.5

750
=

396.1

750
.

They have no incentive to deviate, and they are worse off than in Scenario (2).
When there is one other informed student, the third student can stay uninformed and obtain

396.1
750

ex ante, or 676.5
750

when being type (1, 1.1, 0) as above. If she acquires information about others
and becomes informed, the school choice game has the following equilibrium in pure strategies:

(One) Uninformed : σ ((1, 1.1, 0)) = (b, a, c) ;σ ((1, 0.1, 0)) = (a, b, c) ;

and the informed player’s strategy is presented in Table A.8:
The expected payoff to an informed player is:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

4

7

1

25

)
=

4

5

326

750
+

1

5

158

175
=

396.22857

750
.
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Table A.8: Equilibrium strategies of the informed student when another student is informed under IA

Others’ Preferences Ex Ante Action: Informed Player Ex Post Payoff: Informed Player
Uninformed Informed Probability (1,0.1, 0) (1, 1.1, 0) (1, 0.1, 0) (1, 1.1, 0)

(1, 0.1, 0) (1, 0.1, 0) 16/25 (a, b, c) (b, a, c) 11/30 11/10

(1, 1.1, 0) (1, 0.1, 0) 4/25 (a, b,c) (b, a, c) 1/2 11/20

(1, 0.1, 0) (1, 1.1, 0) 4/25 (a, b,c) (b, a, c) 1/2 11/20

(1, 1.1, 0) (1, 1.1, 0) 1/25 (a, b,c)
(a, b, c) w/ prob. 6/7a

(b, a, c) w/ prob. 1/7a 1 4/7

a. We may allow one informed student to play (a,b,c) and the other informed to play (b,a,c), which is a pure-strategy
Nash equilibrium. When either of the two informed students has the same probability to play (a,b,c), the expected
payoff of everyone is 31/40 (> 4/7). This leads to a type-(1,1.1,0) student willing to pay 6.75/750 to become informed,
given that there is only one more informed student. Moreover, this makes the third uninformed student willing to pay
4.5/750 to be informed. In any case, the interval prediction of WTP for information about others’ preferences, which
is [0, 9/750] for a type-(1,1.1,0) student, includes all these values.

Therefore, conditional on type (1, 1.1, 0), the WTP given there is another informed agent is:

wother1 =
158

175
− 676.5

750
=

0.6428

750
.

When two other students are informed, if the third chooses to be informed, we are back to
Scenario (1). Conditional on being type (1, 1.1, 0), her payoff is 681

750
if informed. When two other

students are informed, the third uninformed student has a payoff of:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

46.9
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1

25

)
=

4

5

326

750
+

1

5

688.71

750
=

398.54

750
.

Therefore,

wother2 =
681

750
− 688. 71

750
< 0.

That is, when the other two students are informed, the third student does not have an incentive to
acquire information.

Remark A.18. When only one number for WTP is elicited, a type-(1, 1.1, 0) student reports a
number in

[
0, 9

750

]
. Averaging over all student ex ante, the WTP for information about others’

preferences is in [0, 1.8
750

].

DA: Since truthful reporting is a dominant strategy, there is no incentive to know others’ prefer-
ences.
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Appendix B Equilibrium analyses with risk-averse students

This appendix compares risk-neutral and risk-averse students in terms of their WTP for informa-
tion. While risk-neutral students have the same cardinal preferences as before (Table 1), we use a
specific parameterization for risk-averse students’ von Neumann-Morgenstern utilities associated
with each schools (Table B.1). Our computation can generalize to other functional forms.

Table B.1: Preference/Payoff Table for Risk-Averse Students
Students s = a s = b s = c

1 1
√
0.1w/ prob. 4/5;

√
1.1w/ prob. 1/5 0

2 1
√
0.1 w/ prob. 4/5;

√
1.1w/ prob. 1/5 0

3 1
√
0.1 w/ prob. 4/5;

√
1.1w/ prob. 1/5 0

In the following, we evaluate the ex ante welfare/payoff, i.e., before the realization of the utility
associated with school B. Note that ex ante, the expected payoff of being assigned to B is 0.463
(≈ 4∗

√
0.1

5
+ 1∗

√
1.1

5
) and is better than 1/3 of a for any student.22

Conclusion B.1. WTP for own values is lower for risk-averse students; WTP for others’ values is
similar when measured as the percentage of expected utilities, but is much lower when measured
in dollars.

B.1 Information about Own Values

Table B.2 tabulates the equilibrium WTP measured in dollars, as well as a percentage of the ex-
pected utility under complete information, and under no information.

Table B.2: WTP for information on own values: Risk-averse and risk-neutral students under IA
# of Other In Dollars Pctg. of Complete Info EU Pctg. of no Info EU

Informed Players Averse Neutral Averse Neutral Averse Neutral

0 0.077 0.080 13% 15% 15% 18%

1 0.062 0.066 11% 12% 12% 15%

2 0.049 0.052 8% 10% 9% 12%

Notes: WTP in dollars with risk aversion is calculated as follows: we first obtain the certainty equivalence in dollars of the two expected utilities
and then take the difference.

In Table B.2, the complete information expected utility with risk averse under IA is 0.558,
while the one under no information is 0.488. The corresponding expected values for the risk
neutral students are 397

750
= 0.529 and 325

790
= 0.411, respectively.

22If u(x) = x(1−r)

1−r , the expected utility from being matched with B is increasing in r which is also the coefficient
of relative risk aversion.
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Table B.3: WTP for information on own values: Risk-averse and risk-neutral students under DA
# of Other In Dollars Pctg. of Complete Info EU Pctg. of no Info EU

Informed Players Averse Neutral Averse Neutral Averse Neutral

0 0.003 0.007 0.57% 1.37% 0.61% 1.54%

1 0.004 0.007 0.57% 1.37% 0.61% 1.54%

2 0.004 0.007 0.57% 1.37% 0.61% 1.54%

Notes: WTP in dollars with risk aversion is calculated as follows: we first obtain the certainty equivalence in dollars of the two expected utilities
and then take the difference.

B.2 Information about others’ values

Note that the WTP for information given one’s type being (1, 0.1, 0) is always zero. Therefore, the
table below is conditional on the student being type (1, 1.1, 0).

Table B.4: WTP for information on others’ values: Risk-averse & risk-neutral students under IA
# of Other In Dollars Pctg. of Complete Info EU Pctg. of no Info EU

Informed Players Averse Neutral Averse Neutral Averse Neutral

0 0.023 0.012 2% 2% 3% 3%

1 < 0 0.001 - 0% - 0%

2 < 0 < 0 - - - -

Notes: WTP in dollars with risk aversion is calculated as follows: we first obtain the certainty equivalence in dollars of the two expected utilities
and then take the difference.
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Appendix C Experimental Instructions: DA, OwnValue

This is an experiment in the economics of decision making. In this experiment, we simulate a
procedure to allocate students to schools. The procedure, payment rules, and student allocation
method are described below. The amount of money you earn will depend upon the decisions you
make and on the decisions other people make. Do not communicate with each other during the
experiment. If you have questions at any point during the experiment, raise your hand and the
experimenter will help you. At the end of the instructions, you will be asked to provide answers to
a series of review questions. Once everyone has finished the review questions, we will go through
the answers together.

Overview:

• There are 12 participants in this experiment.

• The experiment consists of three parts:

– There will be 20 rounds of school ranking decisions and student allocations.

– At the end of the 20 rounds, there will be a lottery experiment.

– Finally, there will be a survey.

• At the beginning of each round, you will be randomly matched into four groups. Each group
consists of three participants. Your payoff in a given round depends on your decisions and
the decisions of the other two participants in your group.

• In this experiment, three schools are available for each group, school a, school B and school
c. Each school has one slot. Each school slot will be allocated to one participant.

• Your payoff amount for each allocation depends on the school you are assigned to. These
amounts reflect the quality and fit of the school for you.

– If you are assigned to school a, your payoff is 100 points.

– If you are assigned to schoolB, your payoff is either 110 points or 10 points, depending
on a random draw. Specifically,

∗ with 20% chance, your payoff is 110 points;

∗ with 80% chance, your payoff is 10 points.

– If you are assigned to school c, your payoff is 0.

• Your total payoff equals the sum of your payoffs in all 20 rounds, plus your payoff from the
lottery experiment. Your earnings are given in points. At the end of the experiment you will
be paid based on the exchange rate,
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$1 = 100 points.

In addition, you will be paid $5 for participation, and up to $2.00 for answering the Review
Questions correctly. Everyone will be paid in private and you are under no obligation to tell
others how much you earn.

Are there any questions?
Procedure for the first 10 rounds:

• Every round, you will be asked to rank the schools twice:

– Ranking without information (on your school B value): you will rank the schools
without knowing the realization of your value for school B;

– Ranking with information (on your school B value): the computer will first inform you
of your school B value, and then ask you to rank the schools.

• Ranking without information consists of the following steps:

– The computer will randomly draw the value of school B for each participant indepen-
dently, but will not inform anyone of his or her value.

– Without knowing the realization of school B value, every participant submits his or her
school ranking.

– The computer will then generate a lottery, and allocate the schools according to the
Allocation Method described below.

– The allocation results will not be revealed till the end of the round.

• Ranking with information consists of the following steps:

– The computer will randomly draw the value of school B for each participant indepen-
dently, and inform everyone of his or her school B value.

– After knowing his or her school B value, every participant submits his or her school
ranking.

– After receiving the rankings, the computer will generate a lottery, and allocate the
schools according to the Allocation Method described below.

• Feedback: At the end of each round, each participant receives the following feedback for
each of the two rankings: your and your matches’ school B values, rankings, lottery num-
bers, assigned schools, and earnings.

• At the beginning of each round, the computer randomly decides the order of the two rank-
ings:
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– with 50% chance, you will rank the schools without information first;

– with 50% chance, you will rank the schools with information first;

• The process repeats for 10 rounds.

Allocation Method

• The lottery: the priority of each student is determined by a lottery generated before each
allocation. Every student is equally likely to be the first, second or third in the lottery.

• The allocation of schools is described by the following method:

– An application to the first ranked school is sent for each participant.

– Throughout the allocation process, a school can hold no more applications than its
capacity.

If a school receives more applications than its capacity, then it temporarily retains the
student with the highest priority and rejects the remaining students.

– Whenever an applicant is rejected at a school, his or her application is sent to the next
choice.

– Whenever a school receives new applications, these applications are considered to-
gether with the retained application for that school. Among the retained and new ap-
plications, the one with the highest priority is temporarily on hold.

– The allocation is finalized when no more applications can be rejected.

Each participant is assigned to the school that holds his or her application at the end of
the process.

Note that the allocation is temporary in each step until the last step.

Are there any questions?
An Example:

We will go through a simple example to illustrate how the allocation method works. This
example has the same number of students and schools as the actual decisions you will make. You
will be asked to work out the allocation of this example for Review Question 1.

Students and Schools: In this example, there are three students, 1-3, and three schools, A, B, and
C.

Student ID Number: 1, 2, 3 Schools: A, B, C

Slots: There is one slot at each school.
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School Slot
A
B
C

Lottery: Suppose the lottery produces the following order:

1− 2− 3

Submitted School Rankings: The students submit the following school rankings:

1st 2nd 3rd
Choice Choice Choice

Student 1 A B C

Student 2 A B C

Student 3 B A C

The allocation method consists of the following steps: Please use this sheet to work out the
allocation and enter it into the computer for Review Question 1.

Step 1 (temporary): Each student applies to his/her first choice. If a school receives more applica-
tions than its capacity, then it temporarily holds the application with the highest priority and
rejects the remaining students.

Applicants School Hold Reject
1, 2 −→ A −→
3 −→ B −→

−→ C −→

Step 2 (temporary): Each student rejected in Step 1 applies to his/her next choice. When a school
receives new applications, these applications are considered together with the application on
hold for that school. Among the new applications and those on hold, the one with the highest
priority is on hold, while the rest are rejected.
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Applicants School Hold Reject
−→ A −→
−→ B −→
−→ C −→

Step 3 (temporary): Each student rejected in Step 2 applies to his/her next choice. Again, new
applications are considered together with the application on hold for each school. Among
the new applications and those on hold, the one with the highest priority is on hold, while
the rest are rejected.

Applicants School Hold Reject
−→ A −→
−→ B −→
−→ C −→

Step 4 (final): Each student rejected in Step 3 applies to his/her next choice. No one is rejected at
this step. All students on hold are accepted.

Applicants School Accept Reject
−→ A −→
−→ B −→
−→ C −→

The allocation ends at Step 4.

• Please enter your answer into the computer for Review Question 1.

• Afterwards, you will be asked to answer other review questions. When everyone is finished
with them, we will go through the answers together.

• Feel free to refer to the experimental instructions before you answer any question. Each
correct answer is worth 20 cents, and will be added to your total earnings.

Review Questions 2 - 7
2. How many participants are there in your group each round?
3. True or false: You will be matched with the same two participants each round.
4. Everyone has an equal chance of being the first, second or third in a lottery.
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5. True or false: The lottery is fixed for the entire 20 rounds.
6. True or false: If you are not rejected at a step, then you are accepted into that school.
7. True or false: The allocation is final at the end of each step.

We are now ready to start the first 10 rounds. Feel free to earn as much as you can. Are there any
questions?
Procedure for the second 10 rounds:

• Every round, you will again be asked to rank the schools twice.

• Ranking without information is identical to that in the first ten rounds.

• Ranking with information, however, will be different. We will elicit your willingness-to-
pay for your school B value before you submit your ranking in each round. That is, the
information about your school B value is no longer free. Specifically,

– The computer will randomly draw the value of school B for each participant indepen-
dently.

– You will be asked your willingness to pay for this information. You can enter a number
in the interval of [0, 15] points, inclusive, to indicate your willingness to pay.

– After everyone submits their willingness to pay, the computer will randomly draw a
number for each participant independently. The number will be between 0 and 15,
inclusive, with an increment of 0.01, with each number being chosen with equal prob-
ability.

∗ If your willingness to pay is greater than the random number, you will pay the ran-
dom number as your price to obtain your schoolB value. The computer will reveal
your school B value and charge you a price which equals the random number.

∗ If your willingness to pay is below the random number, the computer will not
reveal your school B value and you will not be charged a price.

It can be demonstrated that, given the procedures we are using, it is best for you,
in terms of maximizing your earnings, to report your willingness to pay for your
school B value truthfully since doing anything else would reduce your welfare. So
it pays to report your willingness to pay truthfully.

– You will also be asked to guess the average willingness to pay of the other two partici-
pants in your group, again, in the interval of [0, 15] points, inclusive.

– You will be rewarded for guessing the average of your matches’ willingness to pay
correctly. Your payoff from guessing is determined by the squared error between your
guess and the actual average, i.e., (your guess - the actual average)2. Specifically, the
computer will randomly choose a number between 0 and 49, with each number being
chosen with equal probability. You will earn 5 points, if your squared error is below the
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random number and zero otherwise. Therefore, you should try to guess as accurately
as possible.

– Regardless of whether you obtain your school B value, the computer will reveal the
number of participant(s) in your group who have obtained their school B value(s).

– Every participant submits his or her school ranking.

– After everyone submits their rankings, the computer will generate a lottery, and allocate
the schools according to the same Allocation Method used in the first ten rounds.

• Feedback: At the end of each round, each participant receives the same feedback for each
of the two rankings as in the first ten rounds.

In addition, for ranking with information, the computer will also tell you: your and your
matches’ willingness to pay, the actual prices paid, the random numbers, whether each par-
ticipant in your group knows their school B values, the guesses, and guess earnings.

• The process repeats for 10 rounds.

Are there any questions? You can now proceed to answer review questions 8-10 on your
computer. Recall each correct answer is worth 20 cents, and will be added to your total earnings.
Again, feel free to refer to the instructions before you answer any question.
Review Questions 8 - 10

8. Suppose you submitted 1.12 as your willingness to pay to obtain your school B value, and
the random number is 5.48. Do you get to know your school B value? What price do you
pay?

9. Suppose you submitted 10.33 as your willingness to pay to obtain your school B value, and
the random number is 8.37. Do you get to know your school B value? What price do you
pay?

10. Suppose your guess for the average willingness to pay of the other two participants is 7, and
the actual average is 10. The computer draws a random number, 14. What is your earning
from your guess?

Lottery Experiment

Procedure

• Making Ten Decisions: On your screen, you will see a table with 10 decisions in 10 separate
rows, and you choose by clicking on the buttons on the right, option A or option B, for each
of the 10 rows. You may make these choices in any order and change them as much as you
wish until you press the Submit button at the bottom.

• The money prizes are determined by the computer equivalent of throwing a ten-sided die.
Each outcome, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, is equally likely. If you choose Option A in the
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row shown below, you will have a 1 in 10 chance of earning 200 points and a 9 in 10 chance
of earning 160 points. Similarly, Option B offers a 1 in 10 chance of earning 385 points and
a 9 in 10 chance of earning 10 points.

Decision Option A Option B Your Choice
1 200 points if the die is 1 385 points if the die is 1

160 points if the die is 2-10 10 points if the die is 2-10 A or B

• The Relevant Decision: One of the rows is then selected at random, and the Option (A or
B) that you chose in that row will be used to determine your earnings. Note: Please think
about each decision carefully, since each row is equally likely to end up being the one that is
used to determine payoffs.

For example, suppose that you make all ten decisions and the throw of the die is 9, then your
choice, A or B, for decision 9 below would be used and the other decisions would not be
used.

Decision Option A Option B Your Choice
9 200 points if the die is 1-9 385 points if the die is 1-9

160 points if the die is 10 10 points if the die is 10 A or B

• Determining the Payoff: After one of the decisions has been randomly selected, the com-
puter will generate another random number that corresponds to the throw of a ten-sided die.
The number is equally likely to be 1, 2, 3, ... 10. This random number determines your
earnings for the Option (A or B) that you previously selected for the decision being used.

For example, in Decision 9 below, a throw of 1, 2, 3, 4, 5, 6, 7, 8, or 9 will result in the
higher payoff for the option you chose, and a throw of 10 will result in the lower payoff.

Decision Option A Option B Your Choice
9 200 points if the die is 1-9 385 points if the die is 1-9

160 points if the die is 10 10 points if the die is 10 A or B
10 200 points if the die is 1-10 385 points if the die is 1-10 A or B

For decision 10, the random die throw will not be needed, since the choice is between
amounts of money that are fixed: 200 points for Option A and 385 points for Option B.

We encourage you to earn as much cash as you can. Are there any questions?

61



Appendix D Additional Analyses of Experimental Data

In this appendix, we first present the summary statistics of the experimental data (Table D.1) and
then examine the robustness of our analyses in section 5.1 regarding WTP for information.

D.1 Willingness to Pay for Information: Robustness Checks

In section 5.1, we use a Tobit model to investigate the determinants of WTP for information.
Here, we present the results from linear panel regressions that allow more flexible specifications
and instrumental variables. In short, the following results are similar to those in the main text,
indicating that the endogeneity issue is not a concern.

Corresponding to Table 4 in section 5.1, Table D.2 regresses subject-average WTP on treatment
types and other controls. The two sets of results are qualitatively the same.

In comparison with the results from the random-effect Tobit model in Tables D.3 and 5, the next
two tables provide the results from our analyses of the determinants of WTP in random and fixed
effects panel linear regressions. In all specifications, our outcome variable is the subject-round
WTP. The specification is as follows:

WTPi,t =αi + β1High B × IA OtherV aluei,t + β2High B ×DA OtherV aluei,t

+ β3WTP Guessi,t + Controlsi,t + εi,t,

where i is the index for subjects and t for rounds (with each session); αi is subject fixed effects;
and all control variables are time-subject-specific. Other controls are the same as in section 5.1.
Depending on whether the model is random or fixed effects, the interpretation of αi is different.

The endogeneity of WTP Guessi,t is plausible if there are common shocks in round t that
increase everyone’s WTPi,t and WTP Guessi,t. We address this issue with an IV approach
where the lagged WTP Average−i,t−1 is the instrumental variable. WTP Average−i,t−1, i’ op-
ponents’ WTP in round t − 1, is correlated with WTP Guessi,t, as a subject might rely on the
opponents’ WTP in the previous round to make her guess of others’ WTP this round. Moreover,
WTP Average−i,t−1 should not affect her decision in round t directly, as opponents in each round
are randomly drawn.

The fixed-effect results are presented in Table D.4. The first three columns are from OLS, while
column 4 is from an IV regression, where the instrument for the potentially endogenous variable,
WTP Guessi,t, is WTP Average−i,t−1. Column 5 shows the first-stage result.

When we consider WTP Average−i,t−1 as an IV for use WTP Guessi,t, column 5 presents
the first-stage result which shows thatWTP Average−i,t−1 is positively correlated withWTP Guessi,t
(significant at 1% level).

Column 4 is the IV regression result. Observationally, IV results are not very different from
OLS results (column 3), although the coefficient onWTP Guessi,t is decreased. We next perform
an endogeneity test. Under the null hypothesis that WTP Guessi,t can actually be treated as
exogenous, the test statistic is distributed as chi-squared with degrees of freedom equal to one. It
is defined as the difference of two Sargan-Hansen statistics: one for the IV regression, where the
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Table D.1: Summary Statistics of Experimental Data

Full Sample
Consistent Subjects in the Holt-Laury Lottery Choice Gamea

All IA DA
Treatments OwnValue OtherValue OwnValue OtherValue

(1) (2) (3) (4) (5) (6)

WTP for info 4.42 4.24 6.44 4.32 4.17 1.84
(4.57) (4.56) (4.87) (4.68) (4.30) (2.86)

Guess of others’ WTP 5.09 5.01 7.03 5.25 4.39 3.22
(2.90) (2.90) (2.44) (2.89) (2.63) (2.17)

Info Acquired 0.29 0.28 0.43 0.26 0.28 0.11
(0.46) (0.45) (0.50) (0.44) (0.45) (0.31)

High B×IA OtherValue 0.05 0.05 - 0.20 - -
(0.22) (0.21) - (0.40) - -

High B×DA OtherValue 0.05 0.04 - - - 0.19
(0.21) (0.21) - - - (0.39)

Total cash payment after all roundsb 27.89 27.93 27.58 29.03 26.91 28.36
(4.14) (4.16) (4.39) (3.50) (4.20) (4.25)

% playing a dominated strategy w/ free info
IA 0.50 0.39 0.90 0.64 – –

(2.71) (2.26) (2.67) (3.61) – –
DA 4.70 4.01 – – 8.54 7.37

(11.16) (10.51) – – (13.50) (13.94)
Costly-to-free 0.50 0.51 0.52 0.49 0.52 0.51

(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)
Risk aversion 5.59 6.68 6.41 6.49 6.77 7.05

(2.80) (1.44) (1.28) (1.56) (1.43) (1.38)
Consistent in Holt-Laury 0.84 - - - - -

(0.37) - - - - -
Curiosity 4.20 3.87 5.47 4.35 3.51 2.01

(4.95) (4.86) (5.46) (5.06) (4.55) (3.39)

Demographics

Female 0.54 0.54 0.44 0.56 0.55 0.60
(0.50) (0.50) (0.50) (0.50) (0.50) (0.49)

Graduate student 0.14 0.15 0.21 0.18 0.14 0.05
(0.35) (0.35) (0.41) (0.38) (0.35) (0.22)

Black 0.05 0.03 0.08 0.02 0.00 0.02
(0.21) (0.17) (0.27) (0.13) (0.00) (0.13)

Asian 0.36 0.40 0.41 0.33 0.48 0.35
(0.48) (0.49) (0.49) (0.47) (0.50) (0.48)

Hispanic 0.02 0.02 0.03 0.00 0.05 0.00
(0.14) (0.14) (0.18) (0.00) (0.21) (0.00)

Age 20.83 20.80 21.70 19.82 21.19 20.37
(3.47) (3.05) (3.57) (3.48) (2.54) (1.97)

# Observations 2592 2169 567 513 576 513
# Subjects 288 241 63 57 64 57

Notes: This table reports means and standard deviations (in parentheses) for the variables used in the main analysis. Corresponding to the regressions
controlling for lagged variables, every subject’s 9 rounds (2nd to 10th) with costly information acquisition are included, whereas the rounds with
free information and the first round with costly information are excluded from in the calculation of these statistics.
a. A subject is not consistent in the Holt-Laury lottery choice game if she has more than one switching point or makes a dominated choice. Columns
2–6 exclude 47 inconsistent subjects.
b. This variable is the cash payment after all rounds measured at the subject level. In other words, its mean and standard deviation are calculated
across subjects with each subject corresponding to one observation. Note that the “wealth” variable used in regression analyses measures the
accumulated cash payment at the beginning of a round.

WTP Guessi,t is treated as endogenous, and one for the OLS regression, where WTP Guessi,t
is treated as exogenous. It turns out that the test statistic is 1.64 (p-value 0.20), which leads us to
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Table D.2: Determinants of Subject-Average WTP: Linear Regression
(1) (2) (3) (4)

Full Sample Sub-sample Sub-sample Sub-sample

IA OwnValue 6.56∗∗∗ 6.41∗∗∗ 5.68∗∗∗ 4.08
(0.55) (0.56) (0.92) (3.72)

IA OtherValue 4.51∗∗∗ 4.31∗∗∗ 4.01∗∗∗ 2.20
(0.48) (0.54) (0.93) (3.82)

DA OwnValue 4.44∗∗∗ 4.16∗∗∗ 3.75∗∗∗ 2.08
(0.63) (0.70) (0.91) (3.75)

DA OtherValue 2.21∗∗∗ 1.92∗∗∗ 2.11∗∗ 0.53
(0.30) (0.27) (0.95) (3.74)

% playing a dominated strategy w/ free info
IA 0.11 0.11

(0.10) (0.11)
DA 0.05∗∗∗ 0.05∗∗

(0.02) (0.02)
Curiosity 0.29∗∗∗ 0.29∗∗∗

(0.05) (0.05)
Costly-to-free 1.65∗∗∗ 1.59∗∗∗

(0.37) (0.31)
Risk Aversion -0.29∗∗ -0.25

(0.12) (0.15)
Female -0.75∗

(0.39)
Graduate Student 0.56

(1.73)
Black -1.76

(1.45)
Asian -0.48

(0.39)
Hispanic -1.84∗∗

(0.77)

N 288 241 241 241
R2 0.65 0.63 0.73 0.75

Notes: The outcome variable is subject-level average WTP for information. Columns 2-4 exclude subjects with multiple switching points in the
Holt-Laury lottery game or those who make inconsistent choices. Column 4 also includes the following controls: age, ACT score, SAT score,
dummy for other non-white ethnicities/races, dummy for ACT score missing, dummy for SAT score missing, dummy for degree missing, dummy
for age missing, dummy for ethnicity missing, and dummy for gender missing. Standard errors clustered at session level are in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01.

conclude that WTP Guessi,t is exogenous.
In summary, the results in Table D.4 are similar to those in Tables D.3 and 5 from a random

effect Tobit model. Moreover, the IV results in column (3) are qualitatively similar to other results
in Table D.4.

When we repeat the same analyses with random effect panel regressions, we obtain similar
results (Table D.5).
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Table D.3: Determinants of WTP: Random Effects Panel Tobit Analyses (Treatments pooled)
(1) (2) (3) (4)

IA OwnValue 3.62∗∗ 3.48∗∗∗ 3.51∗∗ 3.37∗∗

(1.45) (1.26) (1.45) (1.39)
IA OtherValue 1.76 1.44 1.68 1.37

(1.24) (1.12) (1.19) (1.14)
DA OwnValue 2.18∗∗ 2.06∗ 2.15∗ 2.03∗∗

(1.11) (1.06) (1.10) (1.01)
High B × IA OtherValue 3.17∗∗∗ 3.16∗∗∗ 3.18∗∗∗ 3.17∗∗∗

(1.10) (0.86) (1.09) (0.85)
High B × DA OtherValue -0.69 -0.67 -0.68 -0.66

(1.07) (1.17) (1.14) (1.10)
WTP Guessi,t: Guess of Opponents’ WTP in t 0.79∗∗∗ 0.78∗∗∗ 0.79∗∗∗ 0.78∗∗∗

(0.14) (0.14) (0.14) (0.14)
WTP Guessi,t × DA 0.21 0.23 0.20 0.22

(0.19) (0.18) (0.19) (0.19)
% playing a dominated strategy w/ free info

IA 0.24∗ 0.26∗ 0.25∗ 0.26∗

(0.13) (0.15) (0.13) (0.15)
DA 0.08∗∗∗ 0.08∗∗ 0.08∗∗∗ 0.08∗∗

(0.02) (0.03) (0.02) (0.03)
Curiosity 0.39∗∗∗ 0.39∗∗∗ 0.39∗∗∗ 0.39∗∗∗

(0.06) (0.06) (0.06) (0.06)
Costly-to-free 1.39∗ 1.23∗ 1.50∗∗ 1.35∗∗

(0.71) (0.65) (0.77) (0.69)
Risk Aversion -0.44∗∗ -0.35 -0.43∗∗ -0.34∗

(0.19) (0.21) (0.19) (0.21)
Round -0.04 -0.04 -0.06 -0.06

(0.07) (0.07) (0.07) (0.07)
Round × costly-to-free -0.11 -0.10 -0.10 -0.10

(0.10) (0.09) (0.10) (0.10)
Accumulated wealth up to t− 1 0.02 0.02

(0.03) (0.03)
Successfully acquired info in t− 1 0.28 0.28

(0.25) (0.25)
Other demographical controls No Yes No Yes

# of observations 2169 2169 2169 2169
# of subjects 241 241 241 241

Notes: The regression sample includes only consistent subjects in the Holt-Laury lottery game. There are 241 subjects in this sample each of whom
has 9 observations from rounds 2–10. Columns (2) and (4) include additional demographical controls: dummy for female, dummy for graduate
student, dummy for black, dummy for Asian, dummy for Hispanic, dummy for other non-white ethnicities/races, age, ACT score, SAT score,
dummy for ACT score missing, dummy for SAT score missing, dummy for degree missing, dummy for age missing, dummy for ethnicity missing,
and dummy for gender missing. Standard errors clustered at session level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

D.2 Decomposition based on Pooled Regression

Table 6 in section 5.1 presents the WTP decomposition based on Tobit models for each treatment.
As a robustness check, we also present results based on pooled regressions (Table D.6). Although
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Table D.4: Determinants of WTP: Linear Models with Fixed Effects and IV Results (Treatments
pooled)

WTP Guessi,t WTP Guessi,t ×DA
FE FE IV 1st Stage 1st Stage
(1) (2) (3) (4) (5)

High B × IA OtherValue 2.25∗∗ 2.25∗∗ 2.23∗∗∗ -0.05 -0.06∗∗

(0.81) (0.80) (0.78) (0.26) (0.02)
High B × DA OtherValue -0.09 -0.09 -0.10 -0.02 -0.02

(0.44) (0.44) (0.39) (0.24) (0.24)
Round -0.01 -0.02 -0.04 -0.12∗∗∗ -0.09∗∗

(0.03) (0.04) (0.04) (0.03) (0.03)
Round × costly-to-free -0.08 -0.08 -0.07 0.03 0.03

(0.05) (0.05) (0.06) (0.04) (0.04)
Accumulated wealth up to t− 1 0.01

(0.02)
Successfully acquired info in t− 1 -0.03

(0.22)
“Endogenous” explanatory variables:
Guess of Opponents’ WTP in t 0.55∗∗∗ 0.55∗∗∗ 0.60∗∗∗

(0.10) (0.10) (0.14)
(Guess of Opponents’ WTP in t) × DA 0.09 0.09 -0.27

(0.14) (0.14) (0.20)
Instrumental variables:
Average WTP of Opponents in t− 1 0.14∗∗∗ -0.00

(0.02) (0.00)
(Average WTP of Opponents in t− 1) × DA 0.03 0.18∗∗∗

(0.02) (0.02)

# of Observations 2169 2169 2169 2169 2169
# of Subjects 241 241 241 241 241
R2 0.18 0.18 0.16 0.12 0.13

Notes: The outcome variable is WTP for information of each subject in each round. Regressions exclude subjects with multiple switching points
or making dominated choices in the Holt-Laury lottery game and only include observations from rounds 2-10. Standard errors clustered at session
level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
“Average WTP of Opponents in t − 1” and its interaction with DA is used as IVs for “Guess of Opponents’ WTP in t” and its interaction with
DA (the 1st-stage results in columns 4 and 5, i.e., dependent variable = “Guess of others’ WTP in t” in column 4, = “(Guess of others’ WTP in
t)×DA” in column 5). An endogeneity test for “Guess of Opponents’ WTP in t” and its interaction with DA based on Sargan-Hansen statistics
gives a p-value of 0.12. That is, we fail to reject the null hypothesis that the variables are exogenous.

results change to some extent, “Conformity” still explains the largest part of the WTP.
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Table D.5: Determinants of WTP: Linear Models with Random Effects and IV Results (Treatments
pooled)

WTP Guessi,t WTP Guessi,t ×DA
RE RE RE RE IV 1st Stage 1st Stage
(1) (2) (3) (4) (5) (6) (7)

IA OwnValue 1.76∗∗ 1.67∗∗ 1.42∗ 1.38∗ 0.73 3.25∗∗∗ -2.79∗∗∗

(0.79) (0.80) (0.73) (0.75) (1.13) (0.30) (0.27)
IA OtherValue 0.56 0.41 0.37 0.28 -0.57 1.68∗∗∗ -2.79∗∗∗

(0.63) (0.71) (0.57) (0.65) (0.92) (0.43) (0.25)
DA OwnValue 1.07∗∗∗ 0.97∗∗ 0.97∗∗ 0.87∗∗ 1.33∗∗ 0.62∗∗ 0.68∗

(0.39) (0.40) (0.39) (0.39) (0.54) (0.31) (0.37)
High B × IA OtherValue 2.29∗∗∗ 2.27∗∗∗ 2.36∗∗∗ 2.32∗∗∗ 2.24∗∗∗ -0.04 -0.06∗∗

(0.82) (0.82) (0.86) (0.84) (0.64) (0.26) (0.03)
High B × DA OtherValue -0.07 -0.06 -0.03 0.01 -0.09 -0.03 -0.04

(0.44) (0.44) (0.44) (0.44) (0.43) (0.24) (0.23)
Round -0.01 -0.01 -0.00 -0.00 -0.04 -0.12∗∗∗ -0.09∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03)
Round × costly-to-free -0.08 -0.08 -0.07 -0.07 -0.07 0.03 0.03

(0.05) (0.05) (0.05) (0.05) (0.06) (0.04) (0.04)
% playing a dominated strategy w/ free info

IA 0.18∗∗ 0.20∗∗ 0.18∗∗ 0.20∗∗ 0.20 -0.11∗ 0.01
(0.09) (0.09) (0.08) (0.09) (0.12) (0.06) (0.01)

DA 0.04∗∗ 0.03∗ 0.03∗∗ 0.03∗ 0.04∗∗ 0.03∗∗ 0.02∗∗

(0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01)
Curiosity 0.22∗∗∗ 0.23∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.25∗∗∗ 0.12∗∗∗ 0.04∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.02)
Costly-to-free 0.93∗∗ 0.80∗∗ 0.76∗ 0.61 1.11∗∗∗ 1.47∗∗∗ 0.67∗∗∗

(0.36) (0.35) (0.41) (0.42) (0.34) (0.34) (0.25)
Risk Aversion -0.31∗∗∗ -0.28∗∗ -0.30∗∗∗ -0.27∗∗ -0.28∗∗ 0.05 -0.02

(0.10) (0.12) (0.10) (0.12) (0.13) (0.09) (0.05)
Accumulated wealth up to t− 1 -0.00 -0.01

(0.02) (0.02)
Successfully acquired info in t− 1 0.66∗∗∗ 0.62∗∗∗

(0.21) (0.21)
“Endogenous” explanatory variables:
Guess of Opponents’ WTP in t 0.59∗∗∗ 0.58∗∗∗ 0.62∗∗∗ 0.62∗∗∗ 0.55∗∗∗

(0.09) (0.10) (0.08) (0.09) (0.13)
(Guess of Opponents’ WTP in t)×DA 0.09 0.09 0.07 0.09 -0.23

(0.12) (0.13) (0.11) (0.12) (0.20)
Instrumental variables:
Average WTP of opponents in t− 1 0.15∗∗∗ -0.00

(0.01) (0.00)
(Average WTP of opponents in t− 1 )×DA 0.03 0.18∗∗∗

(0.02) (0.02)
Other Demographic Controls No Yes No Yes Yes Yes Yes

# of Observations 2169 2169 2169 2169 2169 2169 2169
# of Subjects 241 241 241 241 241 241 241

Notes: The regression sample is the same as that in column 1 in Table 5. Each of the 241 subjects has 9 observations from 9 rounds. Estimates are
from random effects panel Tobit models. All specifications include additional controls: dummy for female, dummy for graduate student, dummy
for black, dummy for Asian, dummy for Hispanic, age, ACT score, SAT score, dummy for ACT score missing, dummy for SAT score missing,
dummy for degree missing, dummy for age missing, dummy for ethnicity missing, and dummy for gender missing. Standard errors clustered at
session level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
“Average WTP of Opponents in t− 1” and its interaction with DA is used as IVs for “Guess of Opponents’ WTP in t” and its interaction with DA
(the 1st-stage results in columns 4 and 5, i.e., dependent variable = “Guess of others’ WTP in t” in column 6, = “(Guess of others’ WTP in t)×DA”
in column 7). Without clustered standard errors, an endogeneity test for “Guess of Opponents’ WTP in t” and its interaction with DA based on
Hausman’s specification test gives a p-value of 0.74. That is, we fail to reject the null hypothesis that the variables are exogenous.
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Table D.6: Decomposition of Subject WTP for Information Based on the Pooled Regression
IA OwnValue IA OtherValue DA OwnValue DA OtherValue

WTP: data 6.44 4.32 4.17 1.84
(4.87) (4.68) (4.30) (2.86)

Model predictiona 6.28 4.11 4.17 1.79
(2.77) (2.83) (2.81) (1.84)

(i) Order effectb 0.72 0.57 1.25 0.64
(0.31) (0.32) (0.79) (0.57)

(ii) Learning over roundsb 0.29 0.24 0.94 0.48
(0.28) (0.26) (0.70) (0.50)

(iii) Conformityb 3.77 2.38 2.60 1.18
(1.72) (1.83) (2.07) (1.34)

(iv) % playing a dominated strategy w/ free infob 0.18 0.08 1.11 0.57
(0.53) (0.43) (0.99) (0.73)

(v) Curiosityb 1.72 1.22 1.62 0.71
(1.74) (1.51) (1.60) (1.10)

(vi) Risk aversionb -0.36 -0.31 0.35 0.09
(0.31) (0.36) (0.57) (0.32)

Total Explained by factors (i)-(vi)c 5.37 3.44 3.60 1.56
(2.68) (2.57) (2.76) (1.81)

Residual WTPd 1.06 0.88 0.56 0.28
(3.95) (3.85) (3.09) (2.25)

Theoretical predictione [5.2,8] [0,0.24] 0.67 0.00

# of observations 567 513 576 513
# of subjects 63 57 64 57

Notes: Decompositions are based on a random effects panel Tobit model that pools observations from all four treatments (column 1 in Table 5 or,
equivalently, column 2 of Table D.3). This is in contrast to Table 6 which uses a separate regression for each treatment. The table reports the sample
average, while standard deviations are in parentheses.
a. “Model prediction” is the predicted value of E(WTP) based on the corresponding estimated model, assuming that unobserved error terms are
equal to zero. The predicted values are censored to [0, 15].
b. The WTP explained by the corresponding factor is the difference between the model prediction with and without the factor. The former is
predicted from the current values of all variables; the latter is calculated by setting the relevant variable value to zero (for factors “Order effect,”
“Conformity,” “% playing a dominated strategy w/ free info,” or “Curiosity”) or setting the relevant variable to the counterfactual value (for “Risk
aversion,” we set the risk aversion measure to the risk-neutral value; for “Learning over round,” we set “Round” to be the last round, i.e., “Round”
= 10).
c. “Total Explained by factors (i)-(vi)” is the total WTP explained by the six factors above. Note that it is not the sum of the explained WTP of the
six factors because of the censoring at 0 and 15.
d. “Residual WTP” is the difference between the observed WTP and the total WTP explained by the six factors.
e. The theoretical predictions are for risk neutral subjects.
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Table D.7: Summary Statistics of Payments for Information among Subjects with ZeroDi = 0

Treatment # observations Mean Median Std. deviation Min Max

IA OwnV 660 2.46 0 3.65 0 14.87
IA OtherV 650 1.45 0 2.78 0 14.32
DA OwnV 610 1.59 0 3.06 0 14.21
DA OtherV 520 0.67 0 1.75 0 10.44

Total 2440 1.59 0 3.01 0 14.87

D.3 Under-investment in Information Acquisition

We run the following linear probability model to investigate who are more likely to have a zero
demand for information:

ZeroDi = α + βDemographicsi +OtherControlsi + εi, (2)

where Demographicsi includes the following list of variables: dummy for female, dummy for
graduate student, dummy for black, dummy for Asian, dummy for Hispanic, age, ACT score,
SAT score, dummy for ACT score missing, dummy for SAT score missing, dummy for degree
missing, dummy for age missing, dummy for ethnicity missing, and dummy for gender missing.
We include Curiosity in some of the regressions. We first pool all treatments together and then
run the regressions separately for each treatment. In the pooled regressions, we also include as
OtherControlsi the dummy for IA OwnValue, IA OtherValue, DA OwnValue, and Costly-to-
free. Table D.8 shows that none of the demographics is robustly correlated with ZeroDi. However,
Curiosity is negatively correlated with ZeroDi, and the correlation is statistically significant.

When we account for the information acquisition cost incurred by subjects with non-zero de-
mand for information, we obtain similar results, as the payments are on average low (Table D.7).

Figure D.1: Effects of Information Provision & Costly Acquisition on Payoffs
Notes: Payoffs are calculated relative to the case in which the information in question is not provided or not possible to be acquired. Payoffs are net

of information acquisition costs. A subject has a “zero info demand” if her WTP is zero in every round.

With the results in Figure D.1, we test if the effects of information provision/acquisition are
different for the two types of subjects. Our results coincide with those for revenues:
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Table D.8: Linear Probability Model: Who has a zero demand for information?
Full Sample IA OwnValue IA OtherValue DA OwnValue

(1) (2) (3) (4) (5) (6) (7) (8)

Curiosity -0.02∗∗∗ -0.01∗∗ -0.02∗∗ -0.02∗∗

(0.00) (0.01) (0.01) (0.01)
Costly-to-free -0.09 -0.08 -0.06 -0.06 -0.14∗ -0.15∗ -0.02 0.01

(0.05) (0.05) (0.07) (0.07) (0.08) (0.08) (0.09) (0.09)
IA OwnV -0.05 -0.02

(0.05) (0.05)
IA OtherV -0.05 -0.03

(0.07) (0.07)
Female 0.10∗∗∗ 0.08∗∗ 0.09 0.05 0.07 0.05 0.11 0.10

(0.03) (0.03) (0.08) (0.08) (0.08) (0.08) (0.09) (0.09)
Graduate student -0.13 -0.15 0.16 0.31 -0.17 -0.62 -0.44∗ -0.43∗

(0.19) (0.15) (0.34) (0.34) (0.62) (0.64) (0.25) (0.24)
Black -0.15∗∗ -0.13∗ -0.13 -0.10 -0.03 -0.08 -0.17 -0.09

(0.06) (0.06) (0.13) (0.13) (0.22) (0.22) (0.25) (0.25)
Asian 0.02 0.04 0.07 0.09 0.06 0.07 -0.02 0.01

(0.05) (0.04) (0.09) (0.09) (0.10) (0.09) (0.10) (0.10)
Hispanic 0.21 0.21 -0.05 -0.03 0.00 0.00 0.33∗ 0.32∗

(0.16) (0.17) (0.23) (0.22) (.) (.) (0.19) (0.18)
Other ethnicity -0.13∗∗ -0.13∗∗ -0.11 -0.06 -0.19 -0.11 -0.17 -0.20

(0.05) (0.05) (0.19) (0.18) (0.14) (0.14) (0.16) (0.15)
Age -0.01 -0.01 -0.00 0.00 -0.01 -0.02 0.03 0.02

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)
ACT 0.00 0.00 0.01 0.01 0.03∗∗∗ 0.03∗∗∗ -0.00 -0.01

(0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
SAT -0.00 -0.00 -0.00 -0.00 -0.00∗∗∗ -0.00∗∗∗ -0.00 -0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Constant 0.41 0.54∗∗ -0.22 -0.29 0.38 1.03 -0.21 0.09

(0.29) (0.25) (0.63) (0.61) (1.06) (1.07) (0.58) (0.58)

N 216 216 72 72 72 72 72 72
R2 0.12 0.19 0.15 0.22 0.25 0.31 0.34 0.39

Notes: The full sample includes subjects from the three treatments. Standard errors clustered at individual level are in parentheses. Additional
controls include dummy for ACT score missing, dummy for SAT score missing, dummy for degree missing, dummy for age missing, dummy for
ethnicity missing, and dummy for gender missing. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(i) Effect of information provision: The same as before.
(ii) Effect of information acquisition: When the three treatments are pooled, the effect of

information acquisition is significantly larger among those with ZeroDi = 0 (at a one-sided
1% level). For an individual treatment, the effect on those with ZeroDi = 0 is significantly
larger in all treatments (at a one-sided 5% level) except IA OwnValue.
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D.4 Analyses of Student Rank-Order Lists

Finally, we investigate the effects of information provision and acquisition on individual strategies.
Our theoretical basis for this analysis is contained in Appendix A.

The first information structure is ex ante (everyone knows the distribution of preferences but
not the realization), under which we have the following hypothesis based on our theoretical results.

Hypothesis 8 (ROL: ex ante). A risk neutral player submits a ROL of ABC as a dominant strategy
under either IA or DA.

Result 10 (ROL: ex ante). More subjects play BAC instead of ABC under IA than under DA. Under
IA, ABC accounts for 72% of the ROLs, followed by BAC 25%; under DA, 90% play ABC, and 8%
submit BAC. The rest plays some other strategies. A session-level Wilcoxon rank-sum (or Mann-
Whitney) test rejects the hypothesis that the ABC or the BAC strategy is played equally often under
IA and DA (both p-values < 0.01).

Note that the strategy ABC is not a dominant strategy for subjects who are sufficiently risk-
averse under IA, which implies that ABC may be less played by more risk-averse subjects. On
the contrary, after categorizing the subjects into two almost-equal-sized groups by risk aversion
measured in the Holt-Laury lottery choice game, we find that ABC (BAC) are played by 71%
(27%) of the less risk-averse subjects who switch choices before or at the 6th Holt-Laury lottery,
while ABC (BAC) are played by 77% (21%) of the rest subjects who are more risk averse. This
finding is consistent with Klijn et al. (2012) who also show that more risk-averse subjects are not
more likely to play “safer” strategies under IA.

Recall that another information structure considered is interim (everyone knows her own valua-
tion of school B and the distribution but not others’ valuations). Also note that under the treatment
of OwnValue, one can acquire information about her own preferences by paying some costs, which
results in a game with some informed players and some uninformed. The next hypothesis is about
the informed players’ strategies. When testing the next hypotheses, the reported p-value is from
the session-level Wilcoxon rank-sum (or Mann-Whitney) test, unless noted otherwise.

Hypothesis 9 (ROL: interim and Acquiring OwnValue). When a subject knows her own prefer-
ences but does not know others’ preferences, it is a BNE (dominant strategy) to submit an ROL
truthfully under IA (DA), regardless of the number of opponents who know their own preferences.

Result 11 (ROL: interim and Acquiring OwnValue). Under IA, when the valuation of school B
is 10, informed subjects are truth-telling at a similar rate – 87% with free information, 88% with
costly acquired information. When the valuation of school B is 110, there are more subjects
playing BAC with acquired information (90%) than those with free information (85%). However,
this difference is not significant (p-value 0.52).

Under DA, when the valuation of schoolB is 10, informed subjects are truth-telling at insignif-
icantly different rates – 95% with free information, 91% with costly acquired information (p-value
= 0.87). When the valuation of school B is 110, however, there are significantly more subjects
playing BAC with acquired information (95%) than with free information (79%) (p-value = 0.01).
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Lastly, we consider information structure ex post (valuations of school B are common knowl-
edge) as a result of information provision and also the OtherValue treatment. Our theoretical
prediction regarding the ROL is summarized below.

Hypothesis 10 (ROL: ex post and Acquiring OtherValue). When a subject knows both her own
preferences and the preferences of her two opponents, it is a dominant strategy to rank the schools
truthfully under DA; the optimal strategy under IA for low-B-valuation subjects report truthfully,
while that for high-B-valuation subjects depends on the preference profile as well as the number of
informed players.

Result 12 (ROL: ex post and Acquiring OtherValue). Under DA, when the valuation of schoolB is
10, informed subjects are truth-telling at insignificantly different rates – 92% with free information,
84% with costly acquired information (p-value = 0.29). When the valuation of school B is 110,
there are fewer subjects playing BAC with acquired information (75%) than with free information
(91%). The difference is again insignificant (p-value = 0.86), partly because there are only 16
subjects who successfully acquire information.

Under IA, when the valuation of school B is 10, informed subjects are truth-telling at a similar
rate — 86% with free information, 84% with costly acquired information. When the valuation of
school B is 110, there are insignificantly more subjects playing BAC with acquired information
(85%) than that with free information (81%) (p-value = 0.75).23

We consider our above results to be consistent with the theoretical predictions. Furthermore,
the only case where costly acquired information and freely provided information have significant
effects is that when acquired information about OwnValue is associated with subjects more likely
to play the dominant strategy.

Lastly, the design of our experiment enables us to investigate whether information on Other-
Value affects the rate of dominant strategy play, i.e., truth-telling, in a strategy-proof mechanism,
when that information is exogenously provided versus endogenously acquired.

We first study truth-telling rates when subjects, already knowing their OwnValue, are addition-
ally provided OtherValue in the DA OtherValue treatment. This analysis enables us to compare
our results with those of (Pais and Pintér 2008, Pais et al. 2011) who impose each information
condition exogenously.

There are in total 108 subjects played DA OtherValue with free information in 9 sessions, each
playing 10 rounds. In each round, subjects submit an ROL with information on OtherValue and
another without that information. We can therefore conduct a paired t-test. To take into account
that subjects may have correlated behaviors in the same session, we calculate session averages.
This gives us two statistics per session: the truth-telling rate with information on OtherValue, 0.92
(s.e. = 0.02), and the truth-telling rate without this information, 0.91 (s.e. = 0.02). The difference
is 0.01 (s.e. = 0.01; p-value > 0.28).

23One may be tempted to investigate subjects’ strategies conditional on the preference profile of all subjects. This
however makes the samples very small, especially among those who successfully acquire information (61 in total).
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We then investigate truth-telling rates when subjects, already knowing their OwnValue, have
the option to acquire OtherValue in the DA OtherValue treatment (regardless of their acquisition
status). There are 72 subjects in the DA OtherValue treatment in 6 session, each playing 10 rounds.
Again, we calculate session averages. This gives us two statistics per session: the truth-telling rate
with the option of acquiring information on OtherValue (regardless of acquisition results), 0.92
(s.e. = 0.02), and the truth-telling rate without the possibility of acquiring this information, 0.92
(s.e. = 0.01). The difference is 0.003 (s.e. = 0.01; p-value > 0.74).

Next, we conduct two sets of tests to see if the truth-telling rate is correlated with whether or not
a subject successfully acquires OtherValue: i) t-tests without controlling for potential correlations
across game plays (Table D.9), and ii) regression analyses (Table D.10).

Table D.9: Truth-telling Rates by Information Acquisition Status in DA OtherValue
Acquired Info? Obs Mean Std. Err. Std. Dev.

Panel A: All 720 game plays (72 subjects × 10 rounds)
No 616 0.937 0.010 0.244
Yes 104 0.827 0.037 0.380

Difference 0.110 0.039
Testing difference = 0: p-value = 0.005

Panel B: Among the 362 game plays with WTP > 0

No 258 0.872 0.021 0.335
Yes 104 0.827 0.037 0.380

Difference 0.045 0.043
Testing difference = 0: p-value = 0.292

Panel A of Table D.9 shows the comparison between the two groups. In terms of optimal
game play (or truth-telling), the difference between them is 0.110, which is significant at the 1%
level under the assumption that game plays are not correlated. The regression in column (1) of
Table D.10 does the same test in a linear probability model, allowing game plays to be correlated.
Again, the difference in optimal play is significant, although at the 5% level. These results seem to
imply that those who acquired information on OtherValue are less likely to play DA optimally.

However, we conjecture that this significant difference is due to the fact that a lot of subjects
have a zero WTP and thus optimally have never acquired information. Taking advantage of the fact
that conditional on a positive WTP, a subject may be randomly denied the information, we then
compare the two groups in a restricted subsample. Panel B of Table D.9 shows the results among
subjects’ game plays with a positive WTP. In terms of truth-telling rate, the difference between the
two groups is now reduced to 0.045 and statistically insignificant.

Similarly, we can control for WTP in the regression analysis. Column (2) of Table D.10 con-
firms our conjecture: the coefficient on “Successfully acquired info on OtherValue” is not signif-
icant, while the one on WTP is significantly negative, implying those with a higher WTP playing
sub-optimally more often. Column (3) adds more controls, and again does not show any difference
between those having acquired info and others, conditional on WTP and other variables.
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Table D.10: Linear Probability Model of Truth-telling (Optimal Play) with Costly Information
Acquisition in DA OtherValue

(1) (2) (3)

Successfully acquired info on OtherValue -0.1098∗∗ -0.0056 -0.0066
(0.048) (0.058) (0.058)

WTP for info -0.0201∗∗ -0.0131
(0.008) (0.010)

WTP for info = 0 0.0750
(0.052)

Round -0.0045
(0.004)

Free-Costly 0.0495
(0.038)

Constant 0.9367∗∗∗ 0.9661∗∗∗ 0.9138∗∗∗

(0.019) (0.015) (0.063)

N 720 720 720
R2 0.020 0.057 0.075

Notes: The dependent variable is an indicator that equals one if a subject plays truth-telling and zero otherwise. Standard errors clustered at the
subject level are in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix E Welfare Analysis

This appendix provides additional analyses of the welfare effects of both information provision by
an educational authority and information acquisition by subjects. Section E.1 and E.2 provide some
additional results, and Section E.3 evaluate the welfare effect of various information provision
policies that an educational authority may adopt.

E.1 Welfare Effects of Information Provision

Free information provision changes a structure from ex ante to interim or interim to ex post. Ta-
ble E.1 reports the means and standard deviations (in parentheses) of subject payoffs and the frac-
tion of efficient allocations by information structure. Columns (1) and (3) in Table E.1 report the
observed payoff and proportion of efficient allocations under each information structure, respec-
tively. P-values for the Wilcoxon matched-pairs signed-ranks tests or the Wilcoxon rank-sum (or
Mann-Whitney) tests are presented, treating each session as an independent observation.

These results complement those in Table 7 in the main text.

E.2 Welfare Effects of Information Acquisition

We now turn to the effects of costly information acquisition on welfare. As the information ac-
quisition technology results in an endogenous probability of receiving the “hard news,” there are
likely both informed and uninformed subjects. If costs are not considered, we expect outcomes to
fall between no information and free information provision.

Regarding the effects of information acquisition, if costs are not taken into account, we expect
outcomes to fall between no information and free information provision. This is because the infor-
mation acquisition technology results in an endogenous probability of receiving the “hard news,”
with both informed and uninformed subjects.

Table E.2 reports the means and standard deviations (in parentheses) of subject payoffs, the
fraction of efficient allocations by information structure, the fraction of having successfully ac-
quired information, the WTP for information, and the costs of information acquisition. Similar to
our earlier analyses, for each treatment, we focus on the same subjects who play a pair of the school
choice games in both the no-information and the costly-information scenarios in each round, where
the order of the two scenarios is randomized in each round. This design feature enables us to per-
form both within- and between-treatment tests. the acquisition of information about OwnValue, IA
achieves 89% of maximum payoffs and efficient allocations among 83% of all games; as a com-
parison, DA achieves 80% of maximum payoffs and efficient allocations among 73% of all games.
Similarly, with the acquisition of information about OtherValue, IA achieves 97% of maximum
payoffs and 96% efficient allocations, whereas DA achieves only 87% and 82%, respectively.

Table E.2 presents the fraction of times each subject successfully acquires the information as
well as her expressed WTP. These are positively correlated with each other due to our experimental
design. In the IA OwnValue treatment, we find that 44% of subjects obtain the desired information
in each round, which is exactly the ratio of the average WTP (6.56) to the upper bound of WTP
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Table E.1: Effects of Information Provision on Payoffs and Allocation Efficiency
Payoff Fraction(Efficient Allocation)

Observed Theoretical Observed Theoretical
in Experiment Prediction in Experiment Prediction

Information Structure (1) (2) (3) (4)

A: IA OwnValue (# obs.:720)
Ex ante 42.51 43.33 0.69 0.68

(51.12) (0.49)
Interim 50.67 52.93 0.94 1.00

(52.52) (0.29)

Test: H0: ex ante = interim; H1: ex ante < interim
p-value 0.01 0.01

B: IA OtherValue (# obs.: 720)
Interim 49.13 52.93 0.89 1.00

(51.90) (0.35)
Ex post 49.12 52.93 0.91 1.00

(52.20) (0.34)

Test: H0: interim = ex post; H1: interim 6= ex post
p-value 0.92 0.35

C: DA OwnValue (# obs.: 720)
Ex ante 42.96 43.33 0.71 0.68

(48.93) (0.48)
Interim 47.22 48.67 0.84 0.87

(54.92) (0.43)

Test: H0: ex ante =interim; H1: ex ante<interim
p-value 0.04 0.04

D: DA OtherValue (# obs.: 1080)
Interim 45.90 48.67 0.81 0.87

(49.96) (0.39)
Ex post 46.09 48.67 0.81 0.87

(49.53) (0.40)

Test: H0: interim = ex post; H1: interim 6= ex post
p-value 0.86 0.86

E: Comparison between IA & DA
Test: H0: (IA ex ante) = (DA ex ante); H1:(IA ex ante) 6= (DA ex ante)
p-value 1.00 1.00

Test: H0: (IA interim) = (DA interim); H1:(IA interim)> (DA interim)
p-value: OwnValuea 0.01 0.01
p-value: OtherValuea 0.02 0.02

Test: H0: (IA ex post) = (DA ex post); H1:(IA ex post) > (DA ex post)
p-value 0.02 0.01

Notes: This table reports the means and standard deviations (in parentheses) of payoffs and the fraction of efficient allocations by information
structure. It only uses data from the rounds with free information provision and the corresponding no information setting. Also presented are
p-values for the Wilcoxon matched-pairs signed-ranks tests or the Wilcoxon rank-sum (or Mann-Whitney) tests. All tests are performed with the
session averages of payoffs or efficiency. All data are weighted at the session level so that the probability of having a high valuation for school B
equals 1/5.
a. These two p-values are calculated with the samples of IA and DA OwnValue treatments and the one with OtherValue treatments, respectively.
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Table E.2: Effects of Information Acquisition on Payoffs and Allocation Efficiency
Payoffa Fraction(Efficient Allocation) Pr(Info Acquired) WTP Costs Paidb

A: IA OwnValue (# obs.: 720)
Ex ante 42.50 0.69

(51.00) (0.54)
Acquiring OwnValue 47.05 0.83 0.44 6.56 2.25

(52.77) (0.47) (0.50) (4.78) (3.56)

Test: H0: ex ante = (Acquiring OwnValue); H1: ex ante < (Acquiring OwnValue)
p-value 0.01 0.01

B: IA OtherValue (# obs.:720)
Interim: Privately Informed 49.98 0.92

(56.75) (0.42)
Acquiring OtherValue 51.36 0.96 0.28 4.49 1.29

(54.07) (0.35) (0.45) (4.56) (2.66)

Test: H0: interim = (Acquiring OtherValue); H1: Interim 6= (Acquiring OtherValue)
p-value 0.25 0.25

C: DA OwnValue (# obs.: 720)
Ex ante 42.73 0.70

(52.73) (0.51)
Acquiring OwnValue 43.80 0.73 0.30 4.44 1.35

(48.73) (0.49) (0.46) (4.38) (2.88)

Test: H0: ex ante = (Acquiring OwnValue); H1: ex ante < (Acquiring OwnValue)
p-value 0.06 0.06

D: DA OtherValue (# obs.: 720)
Interim: Privately Informed 46.77 0.82

(50.46) (0.43)
Acquiring OtherValue 46.27 0.82 0.14 2.21 0.48

(52.46) (0.45) (0.35) (3.15) (1.50)

Test: H0: interim = (Acquiring OtherValue); H1: Interim 6= (Acquiring OtherValue)
p-value 0.92 0.92

E: Comparison between IA & DA
Test: H0: (IA Acquiring OwnValue) = (DA Acquiring OwnValue)

H1: (IA Acquiring OwnValue) > (DA Acquiring OwnValue)

p-value 0.00 0.00

Test: H0: (IA Acquiring OtherValue) = (DA Acquiring OtherValue)
H1: (IA Acquiring OtherValue) > (DA Acquiring OtherValue)

p-value 0.00 0.00

Notes: This table reports the means and standard deviations (in parentheses) of payoffs and the fraction of efficient allocations by information
structure. It only uses data from the rounds with costly information acquisition and the corresponding no information setting. This table presents
p-values for the Wilcoxon matched-pairs signed-ranks tests and Wilcoxon rank-sum (or Mann–Whitney) tests. All data are weighted at the session
level so that the probability of having high valuations of school B equals 1/5. All tests are performed with the session averages of payoffs or
efficiency.
a. “Payoff” does not take into account the cost of information acquisition paid in the experiment.
b. “Costs paid” measures the actual costs subjects paid in the experiment.

(15). By contrast, we find that subjects acquire the information less often in the other treatments,
ranging from 14% in the DA OtherValue treatment to 30% in the DA OwnValue treatment.

To evaluate the net effects of information acquisition, it is necessary to consider the costs.
Section 5.4 in the main text, especially Table 7, provides more details on the welfare implications
of these costs.
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Table E.3: Welfare Effects of Counterfactual Policies (Relative to ex ante)
Laissez-Faire Policy Counterfactual 1 Counterfactual 2

Costly Info Acquisition Free OwnValue, Costly OtherValue Free OwnValue
w/ low costa w/ high costa w/ low costa w/ high costa & Free OtherValue

IA 2.34 -0.12 8.26 6.93 8.15

DA -0.57 -2.00 3.99 2.69 4.68

Notes: This table presents the welfare effects of information acquisition and information provision relative to ex ante (i.e., everyone knows the
distribution, but nobody knows her own or others’ preferences).
a. “Low cost” and “high cost” are two technologies for information acquisition. The former is the one used in the experiment, where a subject
in expectation pays a half of her WTP when successfully acquiring the information; in the latter, the subject always pays her WTP if successfully
acquiring information. Otherwise, subjects do not pay.

E.3 Designing Information-Provision Policies: Counterfactual Analyses

Using the above results, we can now evaluate the welfare effect of various information provision
policies. More specifically, we focus on the following three types of policies, measuring welfare
relative to the ex ante baseline where everyone knows the distribution but no one knows her own
or others’ preferences:

(i) Laissez-Faire Policy: The educational authority provides no information but lets students
acquire information as they wish with either the low- or high-cost technology.

(ii) Counterfactual 1: Free OwnValue and Costly OtherValue: The educational authority
makes all information relevant to OwnValue available but does not provide information about
OtherValue. This policy corresponds to those employed by many school districts where
information about school characteristics is readily available, but information about others’
actions is not. In this setting, students may rely on historical data to infer others’ actions for
the current year.

(iii) Counterfactual 2: Free OwnValue and Free OtherValue: The educational authority
makes all relevant information freely available.

With the estimated effects of information acquisition and provision, we can now calculate the
welfare, measured by the student average payoff in each round, created by each policy. Our results
are summarized in Table E.3. Taking the free-OwnValue-free-OtherValue policy as an example,
we see that its welfare effect under IA is the sum of the welfare gain from providing OwnValue
(8.16) and that from providing OtherValue (−0.01) as shown in Table 7.

To analyze the welfare effects under the laissez-faire policy, some additional assumptions are
needed. For instance, under IA, we first take the net payoff gain of having OwnValue acquisition
under the low-cost assumption (2.29 in Table 7). We then designate that only those who have
successfully acquired OwnValue can engage in acquiring OtherValue. This comprises about 44%
of our subjects. We further assume that this leads to 44% of the net payoff gain from acquiring
OtherValue (0.10 × 44% as in Table 7).24 Similarly, for the free-OwnValue-costly-OtherValue
policy, we take into account the effect of providing OwnValue as well as that of letting subjects
acquire OtherValue (given that they know OwnValue already).

24Note that we ignore the fact that the game with this two-stage information acquisition will have both informed
and uninformed players regarding their own values.
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Overall, making both OwnValue and OtherValue freely available leads to an additional 8.15

(4.68) points for every subject in each round under IA (DA). When the cost is low, the laissez-faire
policy increases average payoffs only under IA. When the cost is high, this benefit disappears; in
other words, engaging in information acquisition decreases social welfare, on average. In com-
parison, when the cost is high, the free-OwnValue-costly-OtherValue policy is always welfare-
improving relative to ex ante, but is dominated by the free-OwnValue-free-OtherValue policy.

Interestingly, the comparison between Counterfactuals 1 and 2 reveals that there is always a
welfare gain for providing free information about others’ preferences under DA. Theoretically,
information about others’ preferences should affect neither strategies nor outcomes under DA.
However, given our observed over-investment in information acquisition, we can interpret the free
provision of information as an intervention to reduce wasteful investment. This result has policy
implications for school districts using DA, suggesting that educational authorities should actively
provide information about others’ preferences/actions even under DA.

79


	Introduction
	Literature Review 
	A Theoretical Framework
	School Choice Mechanisms
	Information Acquisition and Provision in School Choice 

	Experimental Design
	The Environment
	Treatments and Elicitation of WTP and Beliefs
	Experimental Procedures

	Experimental Results
	Willingness to Pay for Information
	Determinants of WTP for Information: Subject-Average
	Determinants of Willingness to Pay for Information: Panel Data Analyses

	Decomposition of a Subject's WTP
	Heterogeneity: Under-Acquisition of Information
	Welfare Analysis: Payoffs and Allocative Efficiency

	Conclusion
	Appendices
	Appendix Model setup and equilibrium analysis with risk-neutral students
	The Setup
	Equilibrium analysis with risk neutral students
	Scenario (1): Complete Information about Preferences (ex post)
	Scenario (2): Incomplete Information about Preferences (interim)
	Scenario (3): Unknown Preferences (ex ante)
	Scenario (4): (3) + acquisition of information about one's own preferences
	Scenario (5): (2) + acquisition of information about others' preferences

	Appendix Equilibrium analyses with risk-averse students
	Information about Own Values
	Information about others' values

	Appendix Experimental Instructions: DA, OwnValue
	Appendix Additional Analyses of Experimental Data
	Willingness to Pay for Information: Robustness Checks
	Decomposition based on Pooled Regression
	Under-investment in Information Acquisition
	Analyses of Student Rank-Order Lists

	Appendix Welfare Analysis
	Welfare Effects of Information Provision 
	Welfare Effects of Information Acquisition
	Designing Information-Provision Policies: Counterfactual Analyses 


