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Abstract

When participating in school choice, students may incur information acquisition costs to learn
about school quality. This paper investigates how two popular school choice mechanisms,
the (Boston) Immediate Acceptance and the Deferred Acceptance, incentivize students’ in-
formation acquisition. Specifically, we show that only the Immediate Acceptance mechanism
incentivizes students to learn their own cardinal and others’ preferences. We demonstrate that
information acquisition costs affect the efficiency of each mechanism and the welfare ranking
between the two. In the case where everyone has the same ordinal preferences, we evaluate the
welfare effects of various information provision policies by education authorities.
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1 Introduction

When choosing a school, students often have imperfect information on their own preferences over

candidate schools, partly because it is difficult to assess the potential educational outcomes for

each school (Dustan, de Janvry and Sadoulet 2015). More importantly, acquiring this information

can be costly, if a student faces too many choices, or must acquire information on a large number of

factors, such as academic performance, teacher quality, school facilities, extra-curricular activities

offered, and peer quality.

The literature on matching and school choice, however, typically assumes that all students

have perfect knowledge about their own preferences, at least their ordinal ones. Relaxing this

assumption, our study extends the literature by investigating how mechanisms incentivize student

information acquisition in school choice and how information provision by educational authorities

affects efficiency. Specifically, we focus on two widely used mechanisms, the (Boston) Immediate-

Acceptance (hereafter IA) and the Gale-Shapley Deferred-Acceptance (hereafter DA) mechanisms.

By taking into account both the benefits and costs of information acquisition, this study provides a

more comprehensive evaluation of the mechanisms and as a result provides guidance for the design

of school choice or other matching markets.

Our first contribution is to show that IA and DA provide heterogeneous incentives for students

to acquire information. In a setting with unknown preferences and costly information acquisi-

tion, we prove that both the strategy-proof DA and the non-strategy-proof IA incentivize students

to acquire information on their own ordinal preferences. However, we find that only the non-

strategy-proof mechanism induces students to learn their own cardinal preferences with which IA

can sometimes be more efficient than DA (Abdulkadiroğlu, Che and Yasuda 2011, Troyan 2012).

IA’s lack of strategy-proofness also implies that information on others’ preferences can be use-

ful for the purpose of competing with other students. As such, the acquisition of information on

others’ preferences may be individually rational but socially wasteful, a disadvantage of a non-

strategy-proof mechanism.

Although the above results may seem obvious, to the best of our knowledge, they have not

yet been formalized in the literature. More importantly, they lead implications for the study of

the mechanisms. For example, the welfare comparison of the two mechanisms is sensitive to

costly information acquisition. Taking into account endogenous information acquisition, we pro-

vide a numerical example showing that the cost of information acquisition affects student welfare

in equilibrium. In the example, IA achieves higher student welfare than DA when students’ cardi-

nal preferences are private information (i.e., zero information acquisition cost), a finding similar to

Abdulkadiroğlu et al. (2011). As the cost of acquiring information on own preferences increases,

student welfare monotonically decreases under both mechanisms; more importantly, when it passes
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a certain level, the welfare advantage of IA disappears.

Extending these findings, our second contribution is to present some implications for the design

of information provision policies. A possible policy intervention to reduce information acquisition

cost is to provide information freely. We investigate the welfare effects of information provision by

education authorities. Specifically, we consider four sets of policies with increasing information

provision. The least informative policy forbids everyone from acquiring any information beyond

the distribution of preferences. The second policy informs everyone about her own ordinal pref-

erences, and the third reveals one’s own cardinal preferences. The most informative policy makes

everyone’s cardinal preferences common knowledge. The information on a student’s own prefer-

ences might be provided through presentation materials on schools (Hastings and Weinstein 2008)

or by targeting disadvantaged population (Hoxby and Turner 2015). The information on others’

preferences can be (indirectly) provided by publishing everyone’s applications and allowing one to

revise her own application upon observing others’ strategies, as has been done in the school choice

context in Amsterdam (De Haan, Gautier, Oosterbeek and Van der Klaauw 2015) and North Car-

olina (Dur, Hammond and Morrill 2018), as well as in the college admissions context in Inner

Mongolia, China (Gong and Liang 2017).

In a setting where students have the same ordinal preferences, we analyze symmetric equi-

librium under the four information provision policies. We show that the ex ante student welfare

under DA is invariant to the policies, while providing information on one’s own cardinal prefer-

ences improves welfare under IA. Interestingly, we find that provision of information on others’

preferences has ambiguous effects under IA, implying that sometimes providing more information

on others’ preferences can be welfare-decreasing under IA. The reason is that, knowing there is

fierce competition for a school, students who prefer that school may shy away from applying to it;

as a result, other students may be assigned that school with a high probability, an efficiency loss.

The paper proceeds as follows. Section 2 reviews the information acquisition and school choice

literature. Section 3 presents the theoretical results on information acquisition, and Section 4

discusses those on information provision. Section 5 discusses possible extensions and concludes.

2 Literature Review

This study contributes to the matching literature. Typically, these studies assume that agents

know their preferences (Gale and Shapley 1962, Roth and Sotomayor 1990, Abdulkadiroğlu and

Sönmez 2003). One exception is Chade, Lewis and Smith (2014), who consider the case where

colleges observe signals of students’ ability but do not have the possibility to acquire information.

Allowing this possibility, Lee and Schwarz (2012) and Rastegari, Condon and Immorlica (2013)

study settings where firm preferences over workers are not completely known and are revealed
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only through interviews.

To our knowledge, the only theoretical papers that address endogenous information acquisition

in matching are those of Bade (2015) and Harless and Manjunath (2015). In the context of house

allocations, Bade finds that the unique ex ante Pareto optimal, strategy-proof and non-bossy allo-

cation mechanism is that of serial dictatorship. However, in their study, Harless and Manjunath

(2015) prove that the top-trading-cycles mechanism dominates the serial dictatorship mechanism

under progressive measures of social welfare. Both papers focus on ordinal mechanisms.1 As we

show below, in any strategy-proof ordinal mechanism, students have no incentives to learn their

cardinal preferences beyond the ordinal ones, while information on cardinal preferences can be

welfare-improving, especially when students have similar ordinal preferences (Abdulkadiroğlu et

al. 2011). Lastly, in an ongoing study, Artemov (2016) considers an environment similar to our

experimental setting to compare the performance of IA and DA.

Another unique feature of our study is the acquisition of information on others’ preferences,

which is in contrast with other studies that focus on the acquisition of information on one’s own

preferences. One exception in this body of literature is Kim (2008), who considers a common-

value first-price auction with two bidders, one of whom learns her opponent’s signal.

In addition to the matching literature, information acquisition is considered in other fields,

e.g., bargaining (Dang 2008), committee decisions (Persico 2004, Gerardi and Yariv 2008), con-

tract theory (Crémer, Khalil and Rochet 1998, Crémer and Khalil 1992), finance (Barlevy and

Veronesi 2000, Hauswald and Marquez 2006, Van Nieuwerburgh and Veldkamp 2010), and law

and economics (Lester, Persico and Visschers 2009). In particular, there is a large theoretical lit-

erature on the role of information acquisition in mechanism design, especially in auction design,

e.g., Persico (2000), Compte and Jehiel (2007), Crémer, Spiegel and Zheng (2009), Shi (2012),

surveyed in Bergemann and Valimaki (2006). Notably, Bergemann and Valimaki (2002) show

that the Vickrey-Clark-Groves mechanism guarantees both ex ante and ex post efficiency in every

private value environment.

3 Information Acquisition

In this section, we outline a theoretical model of endogenous information acquisition for one’s

own and others’ preferences under two common school choice mechanisms, the Immediate and

Deferred Acceptance mechanisms.

1An ordinal mechanism only requires agents to reveal their ordinal preferences.
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3.1 The Setup

Our model begins with a finite set of students, I , to be assigned to a finite set of schools, S, through

a centralized school choice mechanism. S is supplemented by a “null school” or outside option,

s0, and S ≡ S ∪ s0. For each s ∈ S, there is a finite supply of seats, qs ∈ N, and the total

capacity is no more than the total number of students,
∑

s∈S qs ≤ |I|, while qs > 0 for all s. By

assumption, qs0 ≥ |I|. Moreover, schools rank students using a common uniform random lottery

(single tie-breaking) whose realization is unknown to students when they enter the mechanism.

Student i’s valuations of schools an i.i.d. vector draw from a distribution, F , denoted by a

vector Vi = [vi,s]s∈S , where vi,s ∈ [v, v], 0 < v < v, is i’s von Neumann-Morgenstern utility of

school s. For notational convenience, we assume that vi,s0 = 0 for all i, which implies that every

school in S is acceptable to everyone. Therefore, this is an independent-private-value model, and

we discuss how our results generalize to common- and interdependent-value models in Section 5.

Furthermore, student preferences are strict: For any pair of distinct schools s and t in S, vi,s 6=
vi,t for all i. We therefore define strict ordinal preferences P on S such that sPit if and only

if vi,s > vi,t. We also augment the set of all possible strict ordinal preferences P with a “null

preference” P φ ≡ ∅ denoting that one has no information on her ordinal preference, expressed as

P̄ = P ∪ ∅ . The distribution of V conditional on P is denoted by F (V |P ), while the probability

mass function of P implied by F is G (P |F ) (P is finite). We impose a full-support assumption

on G (P |F ), i.e., G (P |F ) > 0, ∀P ∈ P , indicating that every strict ordinal preference ranking is

possible given the distribution of cardinal preferences. Necessarily, G(P φ|F ) = 0.

In our model, the value of the outside option and the distribution of preferences, F (V ) and

thus G(P |F ), are always common knowledge. However, in contrast to previous models of school

choice, we introduce an information-acquisition stage for each i to learn her own preferences (Pi
and/or Vi) or others’ preferences (V−i) before entering the mechanism. Because of the independent-

private-value nature, learning about others’ preferences is only for the purpose of gaming or com-

peting with other students.

3.2 School Choice Mechanisms

We focus on two mechanisms popular in both research literature and practice: the Boston Imme-

diate Acceptance and the Gale-Shapley Deferred Acceptance mechanism.

The Immediate Acceptance mechanism (IA) asks students to submit rank-ordered lists (ROL)

of schools. Together with the pre-announced capacity of each school, IA uses pre-defined rules to

determine the school priority ranking over students and consists of the following rounds:

Round 1. Each school considers all students who rank it first and assigns its seats in order of

their priority at that school until either there is no seat left at that school or no such student left.
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Generally, in:

Round (k > 1). The kth choice of the students who have not yet been assigned is considered.

Each school that still has available seats assigns the remaining seats to students who rank it as kth

choice in order of their priority at that school until either there is no seat left at that school or no

such student left.

The process terminates after any round k when either every student is assigned a seat at some

school, or the only students who remain unassigned have listed no more than k choices.

The Gale-Shapley Deferred Acceptance mechanism (DA) can be either student-proposing or

school-proposing. We focus on the student-proposing DA mechanism in this study. Specifically,

the mechanism collects school capacities and students’ ROLs for schools. With strict rankings of

schools over students that are determined by pre-specified rules, it proceeds as follows:

Round 1. Every student applies to her first choice. Each school rejects the least ranked students

in excess of its capacity and temporarily holds the others.

Generally, in:

Round (k > 1). Every student who is rejected in Round (k − 1) applies to the kth choice

on her list. Each school pools together new applicants and those on hold from Round (k − 1).

It then rejects the least ranked students in excess of its capacity. Those who are not rejected are

temporarily held.

The process terminates after any Round k when no rejections are issued. Each school is then

matched with those students it is currently holding.

In the following, for simplicity, we assume that schools rank students by a post-application

uniform lottery without pre-defined priorities.2

3.3 Acquiring Information on Own Preferences

We first investigate the incentives to acquire information on one’s own value. The timing of the

game and the corresponding information structure are described as follows and also in Figure 1:

(i) Nature draws individual valuation Vi, and thus ordinal preferences Pi, from F (V ) for each

i, but i knows only the value distribution F (V );

(ii) Each individual i decides whether to acquire a signal on her ordinal preferences; If yes, she

decides how much to invest in information acquisition, denoted by α ∈ [0, ᾱ].

2This restriction is imposed in the model studied by Abdulkadiroğlu et al. (2011) and is implemented in Beijing’s
middle school choice (He 2018). By imposing this assumption, we do not consider a student’s learning about her own
or others’ pre-determined priorities at schools. We leave this generalization for future work. In principle, an education
authority can effectively inform a student about her priorities, while informing her about her preferences over schools
is less straightforward and more costly.
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Nature draws cardinal preferences Vi for i,

which implies ordinal preferences Pi.

Knowing neither Vi nor Pi, i decides whether

to acquire info on ordinal preferences Pi.

No (α = 0)

i enters the school choice game

knowing only Vi’s distribution.

Yes (α > 0)

i chooses an amount to pay

for acquiring info on Pi: α.

Info on Pi not acquired

w/ prob. 1− a(α)

Info on Pi acquired

w/ prob. a(α)

Having learned Pi, i decides

whether to acquire info on Vi.

No (β = 0)

i enters the school choice

game only knowing Pi.

Yes (β > 0)

i chooses an amount to pay

for acquiring info on Vi: β.

Info on Vi not acquired

w/ prob. 1− b(β)

Info on Vi acquired

w/ prob. b(β)

i enters the school choice

game knowing Vi.

Figure 1: Acquiring Information on One’s Own Preferences.

(iii) If ordinal preferences are learned, she then chooses the investment, β ∈ [0, β̄], to acquire a

signal on her cardinal preferences.

(iv) Regardless of the information acquisition decision or outcome, every student plays the school

choice game under either IA or DA.

We differentiate between the learning of ordinal and cardinal preferences, as the former repre-

sents acquiring coarse information about the schools, whereas the latter represents obtaining more

detailed information and therefore is more costly. In a similar vein, the literature on one-sided

and two-sided matching usually assumes that agents know their own ordinal preferences (Roth and

Sotomayor 1990), while cardinal preferences being possibly unknown due to “limited rationality”

(Bogomolnaia and Moulin 2001).

3.3.1 Technology of Information Acquisition

Information acquisition in our model is covert. That is, i knows that others are engaging in infor-

mation acquisition, but does not know what information they have acquired.

The information acquisition process consists of two stages (see Figure 1): i first pays a cost α
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to acquire a signal on the ordinal preference, ω1,i ∈ P̄ . With probability a (α), she learns perfectly,

ω1,i = Pi; by contrast, with probability 1−a (α) she learns nothing, ω1,i = P φ. In the second stage,

having learned ordinal preferences Pi, i may pay another cost, β, to learn her cardinal preferences

by acquiring a signal ω2,i ∈ V̄ , where V̄ ≡ [v, v]|S| ∪ V φ. Here, with probability b (β), she learns

her cardinal preferences, ω2,i = Vi; by contrast, with probability 1 − b (β), she learns nothing,

ω2,i = V φ, where V φ denotes no cardinal preference information.

The technologies a (α) and b (β) are such that a (0) = b (0) = 0, limα→∞ a (α) = limβ→∞ b (β) =

1, a′, b′ > 0, a′′, b′′ < 0, and a′ (0) = b′ (0) = +∞.3 The cost of information acquisition is c (α, β),

where c (0, 0) = 0, cα, cβ > 0, cαβ, cαα, cββ ≥ 0 for all (α, β) and cα (0, 0) , cβ (α, 0) < +∞ for

all α ≥ 0. Given these restrictions, we limit our attention to α ∈ [0, ᾱ] and β ∈
[
0, β̄
]
, where

c(ᾱ, 0) = c(0, β̄) = v, so that c (α, β) does not exceed the maximum possible payoff (v).

After the two-stage information acquisition, the information i has is summarized by signals

ωi = (ω1,i, ω2,i) ∈ P̄ × V̄ . If i pays (α, β), the distribution of signals is H (ωi|α, β), as outlined

below:

H
(
ωi =

(
P φ, V φ

)
|α, β

)
= 1− a (α) , (learning nothing)

H
(
ωi =

(
Pi, V

φ
)
|α, β

)
= a (α) (1− b (β)) , (learning ordinal but not cardinal)

H (ωi = (Pi, Vi) |α, β) = a (α) b (β) , (learning both ordinal and cardinal).

Together, they imply that H (ωi = (P, V ) |α, β) = 0, if (P, V ) /∈ {(P φ, V φ), (Pi, V
φ), (Pi, Vi)}.

In other words, an agent cannot receive anything other than the three types of signals.

Upon observing signal ωi, the posterior distributions of cardinal and ordinal preferences are:

F (V |ωi) =


F (V )

F (V |Pi)
1Vi

if ωi =
(
P φ, V φ

)
,

if ωi =
(
Pi, V

φ
)
,

if ωi = (Pi, Vi) ;

G (P |ωi) =


G (P |F )

1Pi

1Pi

if ωi =
(
P φ, V φ

)
,

if ωi =
(
Pi, V

φ
)
,

if ωi = (Pi, Vi) ;

where 1Vi (or 1Pi) is the probability distribution placing probability 1 on point Vi (or Pi).

3.3.2 Game of School Choice with Information Acquisition

In our model, after observing the signal ωi, students enter the school choice game under either DA

or IA. Each student i submits an ROL denoted by Li ∈ P such that sLit if and only if s is ranked

3The infinite marginal productivity at zero input is consistent with, for example, the Cobb-Douglas function. When
necessary, we define 0 · ∞ = 0.
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above t.4 When i submits Li and others submit L−i, the payoff is represented by:

u (Vi, Li, L−i) =
∑
s∈S

as (Li, L−i) vi,s ≡ A (Li, L−i) · Vi,

where as (Li, L−i) is the probability that i is accepted by s, given (Li, L−i), and A (Li, L−i) is

the vector of the probabilities determined by the mechanism. We further distinguish between two

types of mechanisms: strategy-proof and non-strategy-proof. A mechanism is strategy-proof if:

u (Vi, Pi, L−i) ≥ u (Vi, Li, L−i) , ∀Li, L−i, and ∀Vi;

i.e., reporting true ordinal preferences is a dominant strategy. It is well-known that the student-

proposing DA is strategy-proof (Dubins and Freedman 1981, Roth 1982), while IA is not (Abdulkadiroğlu

and Sönmez 2003).

Under either mechanism, a symmetric Bayesian Nash equilibrium is defined by a tuple

(α∗, β∗ (P, α∗) , σ∗ (ω)) such that, for all i:

(i) A (possibly mixed) strategy σ∗ (ω) : P̄ × V̄ → ∆ (P),

σ∗ (ω) ∈ arg max
σ

{∫ ∫ ∫
u (V, σ, σ∗ (ω−i)) dF (V |ω) dF (V−i|ω−i) dH

(
ω−i|α∗−i, β∗−i

)}
.

With her own signal ω, everyone plays a best response, recognizing that others have paid(
α∗−i, β

∗
−i
)

to acquire information. This leads to a value function given
(
ω, α∗−i, β

∗
−i
)
:

Π
(
ω, α∗−i, β

∗
−i
)
≡ maxσ

{∫ ∫ ∫
u (V, σ, σ∗ (ω−i)) dF (V |ω) dF (V−i|ω−i) dH

(
ω−i|α∗−i, β∗−i

)}
.

(ii) Acquisition of information on cardinal preferences β∗ (P, α∗) : P × [0, ᾱ]→
[
0, β̄
]
, ∀P ,

β∗ (P, α∗) ∈ arg max
β

{
b (β)

∫
Π
(
(P, V ) , α∗−i, β

∗
−i
)
dF (V |P )

+ (1− b (β)) Π
((
P, V φ

)
, α∗−i, β

∗
−i
)
− c (α∗, β)

}
.

Here, β∗ (P, α∗) is the optimal decision given that one has learned her ordinal preference (P )

after paying α∗ to acquire P .

4We restrict the set of actions to the set of possible ordinal preferences, P . In other words, students are required to
rank all schools in S. The analysis can be straightforwardly extended to allowing ROLs of any length.
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(iii) Acquisition of information on ordinal preferences α∗ ∈ [0, ᾱ],

α∗ ∈ arg max
α


a (α)

∫  b (β∗ (P, α))
∫

Π
(
(P, V ) , α∗−i, β

∗
−i
)
F (V |P )

+ (1− b (β∗ (P, α))) Π
((
P, V φ

)
, α∗−i, β

∗
−i
)

−c (α, β∗ (P, α))

 dG (P |F )

+ (1− a (α))
[
Π
((
P φ, V φ

)
, α∗−i, β

∗
−i
)
− c (α, 0)

]

 .

The above expression has already taken into account that the optimal β equals zero if one

obtains a signal ω1 = P φ in the first stage: β∗(P φ, α) = 0 for all α.

Given the above, we can now state our existence result in Lemma 1:

Lemma 1. Under DA or IA, a symmetric Bayesian Nash equilibrium exists.

This also leads to our first proposition:

Proposition 1 (Information acquisition incentives: own preferences). In any symmetric Bayesian

Nash equilibrium (α∗, β∗ (P, α∗) , σ∗ (ω)) under DA or IA, the following is true:

(i) α∗ > 0, i.e., students always have an incentive to learn their ordinal preferences;

(ii) under DA, β∗ (P, α∗) = 0 ∀P, α∗, i.e., there is no incentive to learn cardinal preferences;

(iii) under IA, there exists a preference distribution F such that β∗ (P, α∗) > 0 for some P .

Remark 1. Similar to the results for DA, students have no incentive to learn their own cardinal

preferences under a strategy-proof mechanism that elicits only ordinal preferences.5

3.4 Acquiring Information on Others’ Preferences

We now consider a student’s incentive to acquire information on others’ preferences. Here, we

assume that everyone knows exactly her own cardinal preferences (Vi) but not others’ preferences

(V−i), and that the distribution of Vi, F (Vi), is common knowledge with the same properties as

before. The purpose of such a setting is to highlight the incentive to collect information for strate-

gic purposes, above and beyond the incentive to learn one’s own preferences. The process and

technology for information acquisition are depicted in Figure 2.

To acquire information, student i may pay δ to acquire a signal of V−i, ωi,3 ∈ V̄(|I|−1). With

probability d (δ), she learns perfectly, ω3,i = V−i; with probability 1 − d (δ), ω3,i = V φ
−i, i.e., she

5On the contrary, a mechanism that directly elicits and uses information on cardinal preferences, e.g., Kovalenkov
(2002), incentivizes students to learn about their own cardinal preferences, even if the mechanism is strategy-proof.
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Nature draws cardinal preferences for everyone,

but Vi is i’s private information.

i decides whether to acquire information

on others’ preferences V−i.

No (δ = 0)

i enters the school choice game

knowing only V−i’s distribution.

Yes (δ > 0)

i chooses an amount to pay

for acquiring info on V−i: δ.

Info on V−i not acquired

w/ prob. 1− d(δ)

Info on V−i acquired

w/ prob. d(δ)

i enters the school choice

game knowing V−i.

Figure 2: Acquiring Information on Others’ Preferences.

learns nothing. The distribution of signals and the posterior distribution of preferences are:

K
(
ω3,i = V φ

−i|δ
)

= 1− d (δ) ,

K (ω3,i = V−i|δ) = d (δ) ,

K
(
ω3,i = V ′−i|δ

)
= 0 if V ′−i /∈ {V−i, V 0

−i};
F (V−i|ω3,i) =

{
F (V−i)

1V−i

if ω3,i = V φ
−i;

if ω3,i = V−i.

The technology has the following properties: d (0) = 0, limδ→∞ d (δ) = 1, d′ > 0, d′′ < 0,

and d′ (0) = ∞. The cost for information acquisition is e (δ) such that e (0) = 0, e′, e′′ > 0 and

e′ (0) <∞. Similarly, we restrict our attention to δ ∈
[
0, δ̄
]
, where e

(
δ̄
)

= v.

Information acquisition is again covert. We focus on a symmetric Bayesian Nash equilibrium,

(δ∗ (V ) , σ̄∗ (ω3, V )), where:

(i) A (possibly mixed) strategy σ̄∗ (ω3, V ) : V̄(|I|−1) × V → ∆ (P), such that

σ̄∗ (ω3,i, Vi) ∈ arg max
σ̄

{∫ ∫
u (Vi, σ̄, σ̄

∗ (ω3,−i, V−i)) dF (V−i|ω3,i) dK
(
ω3,−i|δ∗−i

)}
.

That is, given one’s own signal ω3,i, everyone plays a best response, recognizing that every-

one has paid δ∗ to acquire information (denoted as δ∗−i). We further define the value function

given
(
ω3,i, δ

∗
−i
)

and Vi as:

Φ
(
Vi, ω3,i, δ

∗
−i
)

= max
σ̄

{∫ ∫
u (Vi, σ̄, σ̄

∗ (ω3,−i, V−i)) dF (V−i|ω3,i) dK
(
ω3,−i|δ∗−i

)}
.
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(ii) Acquisition of information on others’ preferences δ∗ (V ) : V̄ →
[
0, δ̄
]
, ∀V :

δ∗ (Vi) ∈ arg max
δ

{
d (δ)

∫
Φ
(
Vi, V−i, δ

∗
−i
)
dF (V−i) + (1− d (δ)) Φ

(
Vi, V

φ
−i, δ

∗
−i

)
− e (δ)

}
.

Here, δ∗ (Vi) is the optimal information acquisition strategy.

The existence of such an equilibrium can be proven by similar arguments in the proof of

Lemma 1, and the properties of information acquisition in equilibrium is summarized as follows:

Proposition 2 (Information acquisition incentives: others’ preferences). Suppose (δ∗ (V ) , σ∗ (ω3, V ))

is an arbitrary symmetric Bayesian Nash equilibrium under a given mechanism. We have:

(i) δ∗ (V ) = 0 for all V under DA;

(ii) There always exists a preference distribution F such that δ∗ (V ) > 0 under IA for V in

some positive-measure set.

Remark 2. Similar to the results for DA, students have no incentive to learn others’ preferences

under a strategy-proof mechanism that elicits either ordinal or cardinal information from students.

In short, this result provides another perspective on strategy-proofness as a desideratum in mar-

ket design: a strategy-proof mechanism makes the school choice game easier to play by reducing

the incentive to acquire information on others’ preferences to zero.

3.5 Welfare Effects of Information Acquisition

By considering the cost of information acquisition, our setting delivers different results on the wel-

fare comparison between the two mechanisms. Below, we provide a numerical example showing

that student welfare under each mechanism is sensitive to the cost of information acquisition.

Specifically, let us consider an example in which IA dominates DA when cardinal preferences

are private information. We investigate how the cost of acquiring information on one’s own prefer-

ences affects the welfare performance of the two mechanisms. There are two schools. Each school

has one seat, and student preference distribution is described in Table 1. There are three students,

and each student’s preferences are an i.i.d. draw from the distribution.

Table 1: Distribution of Student Preferences (F )
Probability Preferences: (vi,1, vi,2)

p1 = 1.7
3 (1, 0.15)

p2 = 0.85
3 (1, 0.7)

p3 = 0.15 (0.15, 1)

Without any additional information other than the preference distribution, the expected utility

for every student of being assigned school 1 is E(Vi,1) = 0.8725 and E(Vi,2) = 1.3/3. Without

12



acquiring any information, students will submit (s1, s2) under DA; under IA, everyone submitting

(s1, s2) is also the unique equilibrium. Under either mechanism, every student gets 0.44 in terms

of expected utility.

The technology of information acquisition is the same as discussed in Section 3.3 (in particular,

Figure 1), and there is no possibility of acquiring information on others’ preferences. We further

specify that a(α) =
√
α
k

(for ordinal information) and b(β) =
√
β

10k2
(for cardinal information).6

The cost function is c(α, β) = α + β + 10kαβ. To see how welfare changes with information

acquisition, we let k be one of the 17 values {0, 0.05, 0.09, 0.15, . . . , 100,∞}. Between 0.05 and

100, k increases on a logarithmic scale. When k = 0, there is no cost to acquire information on

either ordinal or cardinal preferences; when k =∞, it is impossible to acquire any information.

For a given k under a mechanism, we solve for a symmetric Bayesian Nash equilibrium as de-

fined in Section 3.3 and calculate ex ante equilibrium payoffs (net of information acquisition costs).

Figure 3 depicts how the efficiency of each mechanism is affected by information acquisition costs.

0.43

0.45

0.47

0.49

0.51

0.53

0 0.05 0.09 0.15 0.25 0.44 0.75 1.30 2.24 3.85 6.62 11.40 19.62 33.76 58.10 100 ∞

E
xp

ec
te

d 
U

ti
lit

y

Cost coefficient: k

Expected Utility: IA

Expected Utility: DA

Figure 3: Equilibrium Payoffs with Information Acquisition on Own Preferences
Notes: This figure shows the ex ante payoffs (net of information acquisition costs) in symmetric equilibrium when students endogenously acquire
information on their own preferences. The technology of information acquisition is described in Figure 1 of Section 3.3 and is further specified
by a(α) =

√
α
k

(for ordinal information) and b(β) =
√
β

5k
(for cardinal information). That is, to have a probability po of learning one’s own

ordinal preferences, one needs to invest (k · po)2; given that ordinal preferences are known, to have a probability pc of learning one’s own
cardinal preferences, the investment has to be (10k2 · pc)2. The cost function is c(α, β) = α + β + 10kαβ. k has 17 possible values,
{0, 0.05, 0.09, 0.15, . . . , 100,∞}, and between 0.05 and 100, k increases on a logarithmic scale. Ex ante payoff in symmetric equilibrium is
constant across students, as they are homogenous ex ante.

When k = 0 (i.e., free information), cardinal preferences are private information; we have

the same result as in the literature that IA delivers higher welfare than DA. However, when k

6In other words, to have a probability po ∈ [0, 1) of learning one’s own ordinal preferences, one needs to invest
(k · po)2; given that ordinal preferences are known, to have a probability pc ∈ [0, 1) of learning one’s own cardinal
preferences, the investment has to be (10k2 · pc)2.
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increases, the welfare advantage of IA decreases and essentially disappears when k ≥ 1.30.7

This is because students invest less in information acquisition and thus more frequently fail to

acquire information. The two mechanisms converge to the same equilibrium outcome k → ∞
(i.e., impossible to acquire information). The welfare performance of DA also decreases when the

cost becomes higher, because fewer students successfully acquire ordinal information.

The possibility of acquiring information on others’ preferences only affects IA’s welfare per-

formance, but not DA’s. As shown in below in part (iv) of Proposition 4, the information on others’

preferences has an ambiguous effect on student welfare even when it is free. Therefore, the ex ante

welfare of IA can be worse in some cases.

4 Information Provision

While students always have incentives to acquire information on their own preferences and some-

times on others’ preferences, information is not always successfully acquired due to the costs. In

this section, we examine the impact of information provision by education authorities.

In our model, we assume that the provision of information decreases the cost of information

acquisition to zero, while the lack of it increases such cost to infinity. For simplicity, we focus on

a special setting where everyone has the same ordinal (but different cardinal) preferences, similar

to the setting in Abdulkadiroğlu et al. (2011) and Troyan (2012). This setting is unfortunately not

a special case of the model in sections 3.3 and 3.4, because student preferences are correlated.

However, it can be shown that the main results, Propositions 1 and 2, still hold true in the setting

of this section.

We start with a prior F and thus G (P |F ) such that after a P is drawn, it becomes everyone’s

ordinal preference. Again, every school to be acceptable: vi,s > 0 for all i and s. We use Fvs to

denote the marginal distribution of the cardinal preference for school s.

We next represent the education authority’s decision regarding how much information to re-

lease by sending a vector of signals to every i: ω̄i = (ω̄1,i, ω̄2,i, ω̄3,i) ∈ P̄ × V̄ × V̄(|I|−1), where ω̄1,i

and ω̄2,i are the signals of i’s ordinal and cardinal preferences respectively, and ω̄3,i is the signal

of others’ cardinal preferences. All signals are such that ω̄1,i ∈
{
P φ, Pi

}
, ω̄2,i ∈

{
V φ, Vi

}
, and

ω̄3,i =
{
V φ
−i, V−i

}
, i.e., they are either perfectly informative or completely uninformative.

We study the ex ante welfare in equilibrium under each of the following information structures:

(i) Uninformed (UI): ω̄i =
(
P φ, V φ, V φ

−i

)
, ∀i;

(ii) Ordinally Informed (OI): ω̄i =
(
Pi, V

φ, V φ
−i

)
, ∀i;

7In fact, when k = 58.10 or 100, DA delivers slightly higher welfare than IA, although this may be due to
simulation errors.
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(iii) Cardinally Informed (CI): ω̄i =
(
Pi, Vi, V

φ
−i

)
, ∀i;

(iv) Perfectly Informed (PI): ω̄i = (Pi, Vi, V−i), ∀i.
It should be noted that the identical ordinal preference is common knowledge under OI, CI, or

PI. However, under UI, no one knows the realization of ordinal preference, but everyone knows

that the ordinal preference will be the same across students.

These four information structures reflect possible outcomes of different school choice policies.

When the education authority makes it difficult for students to acquire information on schools, we

are likely to be in the UI scenario. When it makes some information easy to access, students may

find it costless to learn their ordinal preferences, and thus we are likely in the OI scenario. If all

information on own preferences is readily available, we are likely to be in the CI scenario.

We are also interested in the PI scenario, which relates to the gaming part of school choice

under a non-strategy-proof mechanism. From Proposition 2, individual students have incentives

to acquire information on others’ preferences under IA. The literature has shown that this addi-

tional strategic behavior may create additional inequalities in access to public education. More

precisely, if one does not understand the game and does not invest enough to acquire information

on others’ preferences, she may have a disadvantage when playing the school choice game. As a

policy intervention, education authority can choose to make this information easier to obtain by

publishing students’ strategies and allowing students to revise their applications upon observing

others’ strategies as in Amsterdam (De Haan et al. 2015) and Wake County, NC (Dur, Hammond

and Morrill 2015).

Note that a symmetric Bayesian Nash equilibrium, possibly in mixed strategies, always exists

under any of the four information structures by the standard fixed point arguments. We summarize

the results on ex ante welfare under DA and IA in the following two propositions.

Proposition 3 (Ex ante welfare under DA). Under DA, the ex ante welfare of every student under

any of the four information structures (UI, OI, CI, and PI) equals
∑

s∈S
qs
|I|

∫
vi,sdFvs (vi,s) in any

symmetric equilibrium.

This implies that there is no gain in ex ante student welfare when students receive more infor-

mation under DA.

Finally, we state our last proposition.

Proposition 4 (Ex ante welfare under IA). Under IA, we obtain the following ex ante student

welfare comparisons in terms of Pareto dominance in a symmetric equilibrium:

(i) When uninformed or ordinally informed, the student welfare is
∑

s∈S
qs
|I|

∫
vi,sdFvs (vi,s);

(ii) Welfare for cardinally informed students weakly dominates that for uninformed or ordinally

informed students: CI ≥ OI = UI;
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(iii) Welfare for perfectly informed students weakly dominates that for uninformed or ordinally

informed students: PI ≥ OI = UI;

(iv) Welfare ranking for perfectly versus cardinally informed students is ambiguous.

The above proposition suggests that it is always beneficial to provide more information on

one’s own cardinal preferences, but the effect of providing information on others’ preferences is

ambiguous. To prove part (iv), we use two examples in Appendix A (sections A.5.4 and A.5.5).

The intuition is as follows: when perfectly informed, it is possible that multiple high-type students

at a school play mixed strategies in equilibrium instead of always top-ranking that school, as they

compete for the same school seats knowing the presence of other high-type students. Consequently,

always top-ranking that school becomes sub-optimal; the school may end up being assigned to a

low-type student, leading to a welfare loss. By contrast, when cardinally informed in a symmetric

Bayesian Nash equilibrium, high-type students may choose to always top rank the school.

5 Concluding Remarks

This paper provides insights for designing better school choice programs by studying endogenous

information acquisition and the effects of information provision.

We distinguish between two types of information acquisition. One is to learn one’s own prefer-

ences over schools, and the other is to discover others’ preferences. Acquiring information on own

preferences is necessary in school choice, given the complex nature of education production and

the usual lack of information on schools. In contrast, learning about others’ preferences is more

related to competing with other students.

The two popular mechanisms, DA and IA, provide heterogeneous degrees of incentives for

students to acquire information on preferences. Only IA incentivizes students to learn their own

cardinal and others’ preferences, while students under DA have no incentive to acquire information

beyond their own ordinal preferences. We demonstrate that information acquisition costs affect

the efficiency of each mechanism and the welfare ranking between the two. This implies that it is

important to endogenize information acquisition in welfare analyses of school choice.

In the case where everyone has the same ordinal preferences, we show the welfare effects of

various policies of information provision. The results reveal that information provision is irrelevant

in DA, while providing more information on own cardinal preferences is always welfare-improving

in IA. However, more information about others’ preferences can sometimes be welfare-decreasing

in IA.

Our model can be potentially extended in several dimensions. The results can be generalized

to the setting in which students have interdependent values over schools. In this case, acquiring
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information on own values can be achieved by learning more about the schools as well as learning

from others’ preferences. The information acquisition on others’ values in the model should be

interpreted as information gathering for strategic purposes beyond learning one’s own preferences.

With interdependent values, students decipher signals on others’ preferences in two ways, useful

information on one’s own values and that on others’ values. Our results then describe under each

mechanism which deciphering is necessary.

Our model considers the sequential acquisition of information, but, in reality, students may ac-

quire information on one’s own and others’ preferences simultaneously. Given the lack of strategy-

proofness and the role of cardinal utility under IA, we expect our results to hold.

Finally, our model assumes every student is rational; however, this assumption is not born out

in laboratory or field studies (Chen and Sönmez 2006, Abdulkadiroğlu, Pathak, Roth and Sönmez

2006, He 2018). Further studies might explore a theoretical model with students of heterogenous

sophistication levels, as in Pathak and Sönmez (2008). Given these considerations, the laboratory

experiment in our companion paper (Chen and He 2018) may help us better understand how the

theoretical predictions correspond to actual participant decisions in a school choice context.
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Appendix A Proofs

Before proving the propositions, let us summarize the properties of the two mechanisms. As the
results can be easily verified by going through the mechanisms, we omit the formal proof.8

Lemma 2. DA and IA (with single tie breaking) have the following properties:
(i) Monotonicity: If the only difference between Li and L′i is that the positions of s and t are

swapped such that tLis, sL′it, and # {s′′ ∈ S|s′Lis′′} = # {s′′ ∈ S|s′L′is′′} for all s′ ∈ S\ {s, t},
then:

as (L′i, L−i) ≥ as (Li, L−i) ,∀L−i;

the inequality is strict when Lj = Li, ∀j 6= i.
(ii) Guaranteed share in first choice: If school s is top ranked in Li by i, as (Li, L−i) ≥ qs/ |I|,

for all L−i.
(iii) Guaranteed assignment:

∑
s∈S as (Li, L−i) = 1 for all L−i.

A.1 Proof of Lemma 1.

The proof applies to either DA or IA. Note that given any (α−i, β−i) of other students, σ∗ (ω)

exists. This can be proven by the usual fixed point argument. Note that σ∗ (ω) does not depend on
one’s own investments in information acquisition, although it does depend on the signal that one
has received (ω).

Given ω, i’s payoff function can be written as:∫ ∫ ∫
ui (V, σ, σ

∗ (ω−i)) dF (V |ω) dF (V−i|ω−i) dH (ω−i|α−i, β−i) ,

which is continuous in σ. Therefore, the value function Π (ω, α−i, β−i) is continuous in (α−i, β−i)

by the maximum theorem.
For student i, the optimal information acquisition is solved by the first-order conditions (second-

order conditions are satisfied by the assumptions on the functions a () , b (), and c ()):

a′ (α∗)

∫ [
b (β∗ (P ))

∫
Π
(
(P, V ) , α∗−i, β

∗
−i
)
F (V |P )

+ (1− b (β∗ (P ))) Π
((
P, V φ

)
, α∗−i, β

∗
−i
)
− c (α∗, β∗ (P ))

]
dG (P |F )

−a′ (α∗)
[
Π
(
P φ, α∗−i, β

∗
−i
)
− c (α∗, 0)

]
−a (α∗)

∫
cα (α∗, β∗ (P )) dG (P |F )− (1− a (α∗)) cα (α∗, 0) = 0

b′ (β∗ (P ))

[∫
Π
(
V, α∗−i, β

∗
−i
)
dF (V |P )− Π

(
P, α∗−i, β

∗
−i
)]
− cβ∗ (α∗, β∗ (P )) = 0, ∀P ∈ P .

Given the non-negative value of information and the properties of a () , b (), and c (), one can verify
that there must exist α∗ and β∗(P ) for all P ∈ P such that the first-order conditions are satisfied.

8Similar results on IA and their proofs are available in He (2018).

21



A.2 Proof of Proposition 1.

A.2.1 Proof of α∗ > 0

Given the existence of a symmetric equilibrium, let us suppose instead that α∗ = 0. It implies that
β∗ (P ) = 0 for all P ∈ P and that the value function can be simplified as:

Π (ω, α∗, β∗) = Π
((
P φ, V φ

)
, 0,0

)
= max

σ

{∫ ∫
ui (V, σ, σ

∗ (ω−i)) dF (V ) dF (V−i)

}
.

Since α∗ = 0 and β∗ = 0 (a |P|-dimensional vector of zeros) is a best response for i, ∀α > 0,

Π
((
P φ, V φ

)
, 0,0

)
≥
{
a (α)

∫
Π
((
P, V φ

)
, 0,0

)
dG (P |F ) + (1− a (α)) Π

((
P φ, V φ

)
, 0,0

)
− c (α, 0)

}
;

or

c (α, 0) ≤ a (α)

[∫
Π
((
P, V φ

)
, 0,0

)
dG (P |F )− Π

((
P φ, V φ

)
, 0,0

)]
,∀α > 0,

which can be satisfied if and only if Π
((
P, V φ

)
, 0,0

)
= Π

((
P φ, V φ

)
, 0,0

)
for all P ∈ P , given

that
∫

Π
((
P, V φ

)
, 0,0

)
dG (P |F ) ≥ Π

((
P φ, V φ

)
, 0,0

)
and cα (0, 0) < a′ (0) =∞.

In a given symmetric equilibrium σ∗, the finiteness of the strategy space implies that a finite set
of lists

(
L(1), ..., L(N)

)
are played with positive probabilities

(
p(1), ..., p(N)

)
(N ∈ N). Suppose that

s1 is bottom ranked in L(1) and s2 is the second to the bottom. Moreover, there exists an ordinal
preference P ∗ such that s1P

∗sP ∗s2 for all s 6= s1, s2. We also define L(1)′ which only switches the
ranking of the bottom two choices in L(1), s1 and s2.

Since Π
((
P ∗, V φ

)
, 0,0

)
= Π

((
P, V φ

)
, 0,0

)
, it implies that L(1) is also a best response to σ∗

even if i has learned Pi = P ∗. We then compare i’s payoffs from submitting L(1) and L(1)′.
By the monotonicity of the mechanism (Lemma 2), as1

(
L(1)′, L−i

)
≥ as1

(
L(1), L−i

)
and

as1
(
L(1)′, L−i

)
≤ as1

(
L(1), L−i

)
for all L−i. Moreover, as∗ (P ∗, L−i) > as∗ (P,L−i) when every-

one else submits L(1) in L−i.
Besides, under either of the two mechanisms, given a list, lower-ranked choices do not affect

the admission probabilities at higher-ranked choices. Together with the guaranteed assignment
(Lemma 2), it implies that as1

(
L(1), L−i

)
+ as2

(
L(1), L−i

)
= as1

(
L(1)′, L−i

)
+ as2

(
L(1)′, L−i

)
.

σ∗ leads to a probability distribution over a finite number of possible profiles of others’ ac-
tions (L−i). With a positive probability, everyone else plays L(1). In this event, therefore, by
submitting L(1)′, i strictly increases the probability of being accepted by s1 and decrease the prob-
ability of the least preferred school s2, comparing with that of submitting L(1). Furthermore, in
any other possible profile of L−i, the probability of being assigned to s∗ is also always weakly
higher when submitting L(1)′. Hence, L(1) is not a best response to σ∗ when Pi = P ∗, and thus
Π
((
P ∗, V φ

)
, 0,0

)
6= Π

((
P, V φ

)
, 0,0

)
.
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This contradiction proves that α∗ = 0 is not an equilibrium. Since an equilibrium always exists,
it must be that α∗ > 0.

A.2.2 Proof of β∗ (P ) = 0 under DA

Suppose β∗ (P ) > 0 for some P ∈ P under DA or any strategy-proof ordinal mechanism. It
implies that:

β∗ (P )

∫
Π
(
(P, V ) , α∗−i, β

∗
−i
)
dF (V |P ) + (1− β∗ (P )) Π

((
P, V φ

)
, α∗−i, β

∗
−i
)
− c (α∗, β∗ (P ))

> Π
((
P, V φ

)
, α∗−i, β

∗
−i
)
,

or,

β∗ (P )

[∫
Π
(
(P, V ) , α∗−i, β

∗
−i
)
dF (V |P )− Π

((
P, V φ

)
, α∗−i, β

∗
−i
)]
> c (α∗, β∗ (P )) . (1)

However, strategy-proofness implies that:∫
Π
(
(P, V ) , α∗−i, β

∗
−i
)
dF (V |P ) = Π

((
P, V φ

)
, α∗−i, β

∗
−i
)
,

and thus Equation (1) cannot be satisfied. Therefore β∗ (P ) = 0 for all P ∈ P .

A.2.3 Proof of β∗ (P ) > 0 for some P under IA

We construct an example where β∗ (P ) > 0 for some P given the distribution F under IA. For
notational convenience and in this proof only, we assume the upper bound of utility v = 1 and the
lower bound v = 0, although we bear in mind that all schools are more preferable than outside
option. Suppose that F implies a distribution of ordinal preferences G (P |F ) such that for s1 and
s2:

G (P |F ) =

{
(1− ε) if P = P̄ , s.t. s1P̄ s2P̄ s3...P̄ s|S|;

ε
|P|−1

if P 6= P̄ .

The distribution of cardinal preferences is:

F
(
V |P̄

)
=


1− η if (vs1 , vs2) = (1, ξ) and vs < ξ2,∀s ∈ S\ {s1, s2} ;

η if (vs1 , vs2) = (1, 1− ξ) and vs < ξ2,∀s ∈ S\ {s1, s2} ;

0 otherwise.

(ε, η, ξ) are all small positive numbers in (0, 1). Otherwise, there is no additional restriction on
F (V |P ) for P 6= P̄ nor on vs, ∀s ∈ S\ {s1, s2}.

Suppose that β∗ (P ) = 0 for all P ∈ P . Section A.2.1 implies that α∗ > 0. If ωi =
(
P̄ , V φ

)
(i.e., ordinal preferences are known but not cardinal ones), the expected payoff of being assigned
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to s2 is:
E
(
vi,s2 |P̄

)
= (1− η) ξ + η (1− ξ) .

And (η, ξ) are small enough such thatE
(
vi,s2|P̄

)
< qs1/ |I|. Therefore, obtaining s2 with certainty

is less preferable than obtaining qs1/ |I| of s1. In equilibrium, with a small enough (ε, η, ξ), it must
be that:

σ∗
((
P̄ , V φ

)
, α∗,0

)
= σ∗

((
P φ, V φ

)
, α∗,0

)
= P̄ .

Therefore, from i’s perspective, any other player, j, plays P̄ with probability:

(1− a(α∗)) + a(α∗)(1− ε) > 1− ε.

It then suffices to show that student i has incentive to deviate from such equilibrium strategies.
Suppose that i has learned her ordinal preferences and Pi = P̄ . If furthermore she succeeds in
acquiring information on Vi, there is a positive probability that (vs1 , vs2) = (1, 1− ξ). In this case,
if she plays Li s.t., s2Lis1Lis3...Lis|S| (or other payoff-equivalent strategies), her expected payoff
is at least:

(1− ξ) (1− ε)(|I|−1) ,

While playing Pi(= P̄ ) leads to an expected payoff less than:

(1− ε)(|I|−1)

[
qs1
|I|

+

(
1− qs1
|I|

)
ξ

]
+
(

1− (1− ε)(|I|−1)
)
.

This upper bound is obtained under the assumption that one is always assigned to s1 when not
everyone submits P̄ . When (ε, ξ) are close to zero, it is strictly profitable to submit Li instead of
P̄ : ∫

Π
((
P̄ , V

)
, α∗−i,0

)
dF
(
V |P̄

)
> Π

((
P̄ , V φ

)
, α∗−i,0

)
,

because in other realizations of V , i cannot do worse than submitting P̄ . The marginal payoff of
increasing β

(
P̄
)

from zero by ∆ is then:

∆

(
b′ (0)

[∫
Π
((
P̄ , V

)
, α∗−i,0

)
dF
(
V |P̄

)
− Π

((
P̄ , V φ

)
, α∗−i,0

)]
− cβ (α∗, 0)

)
,

which is strictly positive given cβ (α∗, 0) < b′ (0) = +∞. This proves that under IA β∗ (P ) > 0

for some P ∈ P given F .

A.3 Proof of Proposition 2.

For the first part, by the definition of strategy-proofness, information on others’ types does not
change one’s best response. Therefore, δ∗ (V ) = 0 for all V under any strategy-proof mechanism.

To prove the second part, we construct an example of F (V ) to show δ∗ (V ) > 0 for some V
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under IA. For notational convenience and in this proof only, we assume the upper bound of utility
v = 1 and the lower bound v = 0, although we bear in mind that all schools are more preferable
than outside option. The distribution of cardinal preferences is:

F (V ) =


1
2
− ε if V = V (1) s.t. (vs1 , vs2) = (1, 0) , vs ∈ (0, ξ) ∀s /∈ {s1, s2} ;

1
2
− ε if V = V (2) s.t. (vs1 , vs2) = (0, 1) , vs ∈ (0, ξ) ∀s /∈ {s1, s2} ;

ε if V = V (3) s.t. (vs1 , vs2) = (1, 1− η) , vs ∈ (0, ξ) ∀s /∈ {s1, s2} ;

where (ε, ξ, η) are small positive values. Besides, F
(
V ∈ [0, 1]|S| \ {V (1), V (2), V (3)}

)
= ε.

Suppose that for student i, Vi = V (3). If δ∗ (V ) = 0 for all V , the best response for i in
equilibrium is to top rank either s1 or s2.

Given F (V ), there is a positive probability,
(

1
2
− ε
)|I|−1, that every other student has V (1) and

top ranks s1. In this case, the payoff for i top-ranking s1 is less than qs1/ |I|+ ξ, while top-ranking
s2 leads to (1− η).

There is also a positive probability,
(

1
2
− ε
)|I|−1, that every other student has V (2) and top ranks

s2. In this case, the payoff for i top-ranking s1 is 1, while the one when top-ranking s2 is at most
(1− η) qs2/ |I| +ξ.

Since
∫

Φ
(
V, V−i, δ

∗
−i
)
dF (V−i) ≥ Φ

(
V, V φ

−i, δ
∗
−i

)
and the above shows they are different for

some realization of (Vi, V−i), thus,∫
Φ
(
V, V−i, δ

∗
−i
)
dF (V−i)− Φ

(
V, V φ

−i, δ
∗
−i

)
> 0.

The marginal payoff of acquiring information (increasing δ (Vi) from zero to ∆) is:

∆

(
d′ (0)

[∫
Φ
(
V, V−i, δ

∗
−i
)
dF (V−i)− Φ

(
V, V φ

−i, δ
∗
−i

)]
− e′ (0)

)
,

which is positive for a small (ε, ξ, η) because e′ (0) < d′ (0) =∞. This proves that δ∗ (V ) > 0 for
some V with a positive measure given F .

A.4 Proof of Proposition 3.

Under UI, the only information i has is that her preferences follow the distribution F (V ). De-
note WE

i as the expected (possibly weak) ordinal preferences of i such that sWE
i t if and only if∫

vi,sdFvs (vi,s) ≥
∫
vi,tdFvt (vi,t). Given WE

i ,
(
PE,1
i , ..., PE,M

i

)
∈ P are all the strict ordinal

preferences that can be generated by randomly breaking ties in WE
i if there is any. Therefore,

M ≥ 1.
When others play L−i, the expected payoff of i playing Li is:∫ ∑

s∈S

as (Li, L−i) vi,sdF (V ) =
∑
s∈S

as (Li, L−i)

∫
vi,sdFvs (vi,s) .
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Since DA with single tie breaking is essentially the random serial dictatorship, it is therefore a
dominant strategy that i submits any PE,m

i m ∈ {1, ...,M}. Moreover, a strategy that is not in(
PE,1
i , ..., PE,M

i

)
can never be played in any equilibrium, because there is a positive-measure set

of realizations of the lottery that such a strategy leads to a strictly positive loss.
We claim that in equilibrium for any L∗−i such that L∗j ∈

(
PE,1
i , ..., PE,M

i

)
, j 6= i, the payoff

to i is: ∑
s∈S

as

(
PE,m
i , L∗−i

)∫
vi,sdFvs (vi,s) =

∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s) ,∀m. (2)

Note that for any L∗−i,
∑

s∈S as

(
PE,m
i , L−i

) ∫
vi,sdFvs (vi,s) does not vary acrossm given that any

PE,m
i is a dominant strategy.

Since everyone has the same expected utility for being assigned to every school, the maximum
utilitarian sum of expected utility is: ∑

s∈S

qs

∫
vi,sdFvs (vi,s) (3)

If Equation (2) is not satisfied and there exists i such that for some L̂∗−i:∑
s∈S

as

(
PE,m
i , L̂∗−i

)∫
vi,sdFvs (vi,s) >

∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s) ,∀m. (4)

The maximum utilitarian social welfare in (3) implies that there exists j ∈ I\ {i} and m ∈
{1, ...,M} such that:

∑
s∈S

as

(
PE,m
j , L̂∗−j

)∫
vj,sdFvs (vj,s) <

∑
s∈S

qs
|I|

∫
vj,sdFvs (vj,s) , (5)

where PE,m
j is j’s strategy in L̂∗−i and PE,m

j = PE,m
i . We can always find such PE,m

i and PE,m
j

because condition (4) is satisfied for all m. However, the uniform random lottery implies that:

as

(
PE,m
i ,

(
L∗−(i,j), P

E,m
j

))
= as

(
PE,m
j ,

(
L∗−(i,j), P

E,m
i

))
∀s if PE,m

i = PE,m
j ,

and thus:∑
s∈S

as

(
PE,m
j ,

(
L∗−(i,j), P

E,m
i

))∫
vj,sdFvs (vj,s) =

∑
s∈S

as

(
PE,m
i ,

(
L∗−(i,j), P

E,m
j

))∫
vi,sdFvs (vi,s) ,

which contradicts the inequalities (4) and (5). This proves (2) is always satisfied.
Under OI, CI, or PI, the unique equilibrium is for everyone to report her true ordinal prefer-

26



ences, and thus the expected payoff (ex ante) is:∫ ∫ ∑
s∈S

as (P,L−i (P )) vi,sdF (V |P ) dG (P |F )

=

∫ ∫ ∑
s∈S

qs
|I|
vi,sdFvs (vi,s|P ) dG (P |F )

=
∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s) ,

where L−i (P ) is such that Lj = P , ∀j ∈ I\ {i}.

A.5 Proof of Proposition 4.

A.5.1 Welfare under UI and OI

We first show UI = OI in symmetric equilibrium in terms of ex ante student welfare.
Under UI, the game can be transformed into one similar to that under PI but everyone has the

same cardinal preferences that are represented in terms of the expected utilities
[∫
vi,sdFvs (vi,s)

]
s∈S .

In a symmetric equilibrium, everyone thus must play exactly the same strategy, either pure or
mixed, which further implies that everyone is assigned to each school with the same probability
and has the same ex ante welfare: ∑

s∈S

qs
|I|

∫
vi,sdFvs (vi,s) .

Under OI, everyone knows that everyone has the same ordinal preferences P . The game
again can be considered as one under PI where everyone has the same cardinal preferences,[∫
vi,sdFvs (vi,s|P )

]
s∈S . Similar to the argument above, the payoff conditional on P is:

∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s|P ) ,

which leads to an ex ante payoff:∫ ∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s|P ) dG (P |F ) =

∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s) .

A.5.2 Proof of CI ≥ UI = OI under IA

We then show CI ≥ OI = UI.
Under CI, everyone’s cardinal preferences Vi are her private information, although her ordinal

preferences P , which is common across i, are common knowledge. Suppose that σBN (V ) :
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[0, 1]|S| → ∆ (P) is a symmetric Bayesian Nash equilibrium. We show that:∫ ∫ (∫
A
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|P ) · Vi

)
dF (Vi|P ) dG (P |F )

≥
∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s) .

The following uses the same idea as in the proof of Proposition 2 in (Troyan 2012). Note that∫
as
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|P ) is i’s probability of being assigned to s in equilibrium

when the realization of cardinal preferences is Vi. Furthermore, the ex ante assignment probability,
i.e., the probability before the realization of P and Vi, is∫ ∫ ∫

as
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|P ) dF (Vi|P ) dG (P |F ) ,

which must be the same across students by symmetry. Therefore, we must have:

|I|
∫ ∫ ∫

as
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|P ) dF (Vi|P ) dG (P |F ) = qs,∀s ∈ S, (6)

as in equilibrium all seats at all s ∈ S must be assigned.
Suppose i plays an alternative strategy σi such that σi =

∫ ∫
σBN (Vi) dF (Vi|P ) dG (P |F ) =∫

σBN (Vi) dF (Vi). That is, i plays the “average” strategy of the equilibrium strategy regardless
of her preferences. Her payoff given any realization of P is:∫ (∫

A
(
σi, σ

BN (V−i)
)
dF (V−i|P ) · Vi

)
dF (Vi|P )

=

∫ (∫ (∫ ∫
A
(
σBN (Vi) , σ

BN (V−i)
)
dF (Vi|P ) dG (P |F )

)
dF (V−i|P ) · Vi

)
dF (Vi|P )

=

∫ (∑
s∈S

(∫ ∫ ∫
as
(
σBN (Vi) , σ

BN (V−i)
)
dF (Vi|P ) dG (P |F ) dF (V−i|P )

)
vi,s

)
dF (Vi|P )

=

∫ (∑
s∈S

qs
|I|
vi,s

)
dF (Vi|P ) .

The last equation is due to (6). Since σi may not be optimal for i upon observing her preferences
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Vi, we thus have for ex ante welfare:∫ ∫ (∫
A
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|P ) · Vi

)
dF (Vi|P ) dG (P |F )

≥
∫ ∫ (∫

A
(
σi, σ

BN (V−i)
)
dF (V−i|P ) · Vi

)
dF (Vi|P ) dG (P |F )

=
∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s) ,

which proves CI ≥ OI = UI in terms of Pareto dominance of ex ante student welfare.

A.5.3 Proof of PI ≥ OI = UI under IA

Under PI, everyone’s cardinal preferences Vi are common knowledge. Given a symmetric equilib-
rium, by the same argument as above, we must have PI Pareto dominates OI and UI.

Suppose that σNE (Vi, V−i) : [0, 1]|S|×|I| → ∆ (P) is a symmetric Nash equilibrium. We show
that:∫ ∫ ∫ (

A
(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi
)
dF (V−i|P ) dF (Vi|P ) dG (P |F )

≥
∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s) .

Note that as
(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
is i’s probability of being assigned to s in

equilibrium when the realization of cardinal preferences is (Vi, V−i). Furthermore, the ex ante
assignment probability, i.e., the probability before the realization of P and (Vi, V−i), is∫ ∫ ∫

as

(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
dF (V−i|P ) dF (Vi|P ) dG (P |F ) ,

which must be the same across students by symmetry. Therefore, we must have, ∀s ∈ S:

|I|
∫ ∫ ∫

as

(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
dF (V−i|P ) dF (Vi|P ) dG (P |F ) = qs,

(7)
as in equilibrium all seats at all s ∈ S must be assigned.

Suppose i plays an alternative strategy σi such that

σi =

∫ ∫ ∫
σNE (Vi, V−i) dF (V−i|P ) dF (Vi|P ) dG (P |F ) .

That is, i plays the “average” strategy of the equilibrium strategy regardless of her and others’
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preferences. Her payoff given a realization of (Vi, V−i) is:

A
(
σi,
[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi

=

(∫ ∫ ∫
A
(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
dF (V−i|P ) dF (Vi|P ) dG (P |F )

)
· Vi

=
∑

s∈S

(∫ ∫ ∫
as

(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
dF (Vi|P ) dG (P |F ) dF (V−i|P )

)
vi,s

=
∑
s∈S

qs
|I|
vi,s.

The last equation is due to (7). Therefore, her payoff given a realization of P is:∫ ∫ (
A
(
σi,
[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi
)
dF (V−i|P ) dF (Vi|P )

=

∫ (∑
s∈S

qs
|I|
vi,s

)
dF (Vi|P ) .

Since σi may not be optimal for i upon observing her and others’ preferences (Vi, V−i), we thus
have:∫ ∫ ∫ (

A
(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi
)
dF (V−i|P ) dF (Vi|P ) dG (P |F )

≥
∫ ∫ ∫ (

A
(
σi,
[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi
)
dF (V−i|P ) dF (Vi|P ) dG (P |F )

=
∑
s∈S

qs
|I|

∫
vi,sdFvs (vi,s) ,

which thus proves that PI > OI = UI in terms of Pareto dominance.
We use two examples to show part (iii) in Proposition 4: Section A.5.4 shows that PI can

dominate CI in symmetric equilibrium while the example in Section A.5.5 shows the opposite.

A.5.4 Example: PI dominates CI in symmetric equilibrium under IA

There are 3 schools (a, b, c) and 3 students whose cardinal preferences are i.i.d. draws from the
following distribution:

Pr ((va, vb, vc) = (1, 0.1, 0)) = 1/2

Pr ((va, vb, vc) = (1, 0.5, 0)) = 1/2

Each school has one seat. For any realization of preference profile, we can find a symmetric Nash
equilibrium as in Table A1.
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Table A1: Symmetric Nash Equilibrium for Each Realization of the Game under PI
Realization of Probability Strategy given realized type Payoff given realized type

Preferences Realized (1, 0.1, 0) (1, 0.5, 0) (1, 0.1, 0) (1, 0.5, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

1/8 (a, b, c) - 11/30 -

(1, 0.5, 0)
(1, 0.1, 0)
(1, 0.1, 0)

1/4 (a, b, c) (b, a, c) 1/2 1/2

(1, 0.5, 0)
(1, 0.5, 0)
(1, 0.1, 0)

1/4 (a, b, c) (a, b, c) 11/30 1/2

(1, 0.5, 0)
(1, 0.5, 0)
(1, 0.5, 0)

1/8 - (a, b, c) - 1/2

The above symmetric equilibrium leads to an ex ante student welfare:

1

2

(
1

4

11

30
+

1

2

1

2
+

1

4

11

30

)
+

1

2

(
1

4

1

2
+

1

2

1

2
+

1

4

1

2

)
=

14

30
.

When everyone’s preference is private information, we can verify that the unique symmetric
Bayesian Nash equilibrium is:

σBN ((1, 0.1, 0)) = σBN ((1, 0.5, 0)) = (a, b, c) .

That is, everyone submits her true preference ranking. This leads to an ex ante welfare of:

1

2

11

30
+

1

2

15

30
=

13

30

which is lower than the above symmetric equilibrium under PI.
Also note that always playing (a, b, c) is also a symmetric Nash equilibrium under PI in all

realizations of preference profile, which leads to the same ex ante student welfare as σBN .

A.5.5 Example: PI is dominated by CI in symmetric equilibrium under IA

There are 3 schools (a, b, c) and 3 students whose cardinal preferences are i.i.d. draws from the
following distribution:

Pr ((va, vb, vc) = (1, 0.1, 0)) = 3/4

Pr ((va, vb, vc) = (1, 0.9, 0)) = 1/4
.
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Each school has one seat. For any realization of preference profile, we can find a symmetric Nash
equilibrium as in Table A2. The ex ante welfare under PI with the above symmetric equilibrium
profile is:

3

4

(
9

16

11

30
+

6

16

1

2
+

1

16

3073

3610

)
+

1

4

(
1

16

19

30
+

6

16

99

190
+

9

16

9

10

)
=

22 549

43 320
≈ 0.52052.

Table A2: Symmetric Nash Equilibrium for Each Realization of the Game under PI
Realization of Probability Strategy given realized type Payoff given realized type

Preference Realized (1, 0.1, 0) (1, 0.9, 0) (1, 0.1, 0) (1, 0.9, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

27/64 (a, b, c) - 11/30 -

(1, 0.9, 0)
(1, 0.1, 0)
(1, 0.1, 0)

27/64 (a, b, c) (b, a, c) 1/2 9/10

(1, 0.9, 0)
(1, 0.9, 0)
(1, 0.1, 0)

9/64 (a, b, c) (a, b, c) w/ prob 3/19
(b, a, c) w/ prob 16/19 3073/3610 99/190

(1, 0.9, 0)
(1, 0.9, 0)
(1, 0.9, 0)

1/64 - (a, b, c) w/ prob 11/19
(b, a, c) w/ prob 8/19 - 19/30

Under CI, i.e., when one’s own preferences are private information and the distribution of
preferences is common knowledge, there is a symmetric Bayesian Nash equilibrium:

σBN ((1, 0.9, 0)) = (b, a, c) ;σBN ((1, 0.1, 0)) = (a, b, c) .

For a type-(1, 0.1, 0) student, it is a dominant strategy to play (a, b, c). Conditional on her type, her
equilibrium payoff is:

9

16

(
1

3

(
1 +

1

10
+ 0

))
+

6

16

1

2
+

1

16
=

219

480
.

For a type-(1, 0.9, 0) student, given others follow σBN , playing (b, a, c) results in a payoff of:

9

16

9

10
+

6

16

(
1

2

(
9

10
+ 0

))
+

1

16

(
1

3

(
9

10
+ 1 + 0

))
=

343

480
.
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If a type-(1, 0.9, 0) student deviates to (a, b, c), she obtains:

9

16

(
1

3

(
9

10
+ 1 + 0

))
+

6

16

(
1

2
(1 + 0)

)
+

1

16
(1) =

291

480
.

It is therefore not a profitable deviation. Furthermore, she has no incentive to deviate to other
rankings such as (c, a, b) or (c, b, a).

The ex ante payoff to every student in this equilibrium under CI is:

219

480

3

4
+

343

480

1

4
=

25

48
≈ 0.52083,

which is higher than that under PI.
In this example, the reason that PI leads to lower welfare is because it sometimes leads to

type-(1, 0.9, 0) students to play mixed strategies in equilibrium. Therefore, sometimes school B is
assigned to a type-(1,0.1,0) student, which never happens under CI in symmetric Bayesian Nash
equilibrium.
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