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Abstract. There exists a large literature on two-person bargaining games and distribution
games (or divide-the-dollar games) under simple majority rule, where in equilibrium a min-
imal winning coalition takes full advantage over everyone else. Here we extend the study
to an n-person veto game where players take turns proposing policies in an n-dimensional
policy space and everybody has a veto over changes in the status quo. Briefly, we find a Nash
equilibrium where the initial proposer offers a policy in the intersection of the Pareto optimal
set and the Pareto superior set that gives everyone their continuation values, and punishments
are never implemented. Comparing the equilibrium outcomes under two different agendas –
sequential recognition and random recognition – we find that there are advantages generated
by the order of proposal under the sequential recognition rule. We also provide some con-
ditions under which the players will prefer to rotate proposals rather than allow any specific
policy to prevail indefinitely.

1. Introduction

Despite the apparent ascendancy of democratic ideas and ideals, there are
serious impediments to their universal acceptance and application. Foremost
among them, especially in ethnically divided societies, is the matter of major-
ity tyranny in majoritarian institutions. When the definition and description
of minorities has deep historical roots, when a majority is easily identifiable,
and when members of all groups are conscious of their status (e.g., Slovaks
in Czechoslovakia, Tatars in Russia, Russians in most of the successor states
of the former Soviet empire, Hungarians in Romania, and Turks in Bulgaria),
then minorities are unlikely to acquiesce to the implementation of any struc-
ture that allows majorities to dictate policy. Indeed, as Calhoun (1953) argued,
“the numerical majority, perhaps, should usually be one of the elements of a
constitutional democracy; but to make it the sole element· · · is one of the
greatest and most fatal of political errors”.

∗ The authors wish to thank Elizabeth Gerber, Richard McKelvey and Scott Page for their
comments on earlier drafts of the paper. This research was partially funded by a grant from
the United States Institute of Peace to the California Institute of Technology.
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A number of devices have been proposed to treat the problems associated
with simple majoritarinism, including federalism and bicameralism. Such
arrangements seek to protect minorities by raising the vote quota necessary
to alter the status quo (cf., Riker, 1982; Hammond and Miller, 1987). Gener-
ally, though, these devices refrain from taking matters to their natural limit –
unanimity rule – in which every individual or identifiable group possesses a
veto over change. Although minorities may demand a veto before agreeing to
any constitutionally defined union, others fear that “misuse” of the veto will
render the state incapable of formulating useful policy. The implementation
of democratic principles, then, appears to entail a choice between the tyranny
and deadlock (Buchanan and Tullock, 1962).

To evaluate this concern, though, requires that we take cognizance of the
fact that constitutional matters rarely if ever focus on static situations. Polit-
ical processes are ongoing so that agreements reached today can sometimes
be enforced by punishments applied tomorrow. A constitutional issue such as
minority rights is rarely “decided in perpetuity” – even if not explicitly de-
bated, those rights must be implicitly and continuously maintained. Similarly,
although a veto may yield deadlock in one period, unanimity rule may be little
more than a device for upgrading the strategic capabilities of minorities so
that they are better equipped to protect their rights over the long term. Thus,
unanimity rule merely sets the stage for bargaining among groups, where the
consequences of bargaining is a continual stream of outcomes that may or
may not be Pareto efficient and that may or may not satisfy various criteria of
fairness and equity.

Existing models of bargaining establish, in fact, that a veto need not imply
deadlock or inefficiency. For example, Rubinstein (1982) and Binmore and
Herrero’s (1988) analyses of 2-person bargaining, which model unanimity
rule to the extent that mutually disadvantageous outcomes are averted only
if both persons reach agreement, reveal that mutually beneficial outcomes
do correspond to subgame perfect equilibria. Unfortunately, these models
and their extension to a more explicitly political realm (cf., Baron and Fer-
ejohn, 1982; McKelvey and Riezman, 1990) are not sufficiently general for
our purpose. They assume, first, that the decision confronting people is the
division of some fixed pie. Although redistributive matters are important, the
usual context for constitutional failure – ethnic conflict – entails issues over
which sidepayments are difficult or impossible to implement directly. Second,
they suppose that the “disagreement point” – the outcome that prevails if no
unanimous agreement is reached – is mutually destructive rather than a status
quo that one side of the dispute or the other finds “unsatisfactory”.

A number of questions about unanimity rule’s operation, then, remain
unanswered. First, is a dynamic conceptualization of political processes suf-
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ficient to avert the most common objections to unanimity rule’s implemen-
tation? Second, what types of policies will result if changes in the welfare
of one group, owing to the structure of the issues being debated, necessarily
exhibit both positive and negative externalities for other groups in society?
And third, what disadvantages accrue to a minority that cannot control the
agenda whereby alternatives to the status quo are considered?

This essay presents a framework for addressing these questions by offering
a model of an n-person committee (legislature) in which there is a proposer
empowered to offer an alternative to the status quo and a status quo that can be
changed only by unanimous consent, but that departs from earlier bargaining
models in four ways. First, rather than assume that alternatives correspond
to divisions of a fixed pie, we assume that the committee is concerned with
policies in some Euclidean policy space and that preferences in this space are
modeled by Euclidean distance. Second, we assume that the disagreement
point is a status quo outcome that need not be “bad” from everyone’s per-
spective. Third, although, as in the Rubinstein et al. framework, we assume
that proposals are made and voted on sequentially in an infinite sequence,
we consider two rules whereby people are empowered to make proposals:
a sequential rule and a random recognition rule. Finally, we consider the
possibility that the committee might choose to “rotate” proposals rather than
establish some specific outcome in perpetuity.

Generally, our conclusions match the intuition that existing models of
bargaining might generate about veto games. We find that unanimity rule
need not afford an overwhelming advantage to whoever controls the agenda
whereby alternatives to the status quo are considered. On the other hand,
once a policy is Pareto optimal in a dynamic sense, then, regardless of its
perceived fairness, it can be sustained as the status quo in perpetuity. We also
characterize the necessary and sufficient conditions for dynamically Pareto
optimal policy paths, and show when a rotation scheme is advantageous im-
plementable policy.

2. The general framework

We begin with some essential notation. First, we let N= {1,2, · · · ,n} be the
set ofplayersor voters, and X⊆ Rn be the compact set of alternativepolicies.
Next, we assume that each voter i∈ N has a von Neumann-Morgenstern
utility function ui : X ∪ {φ} → R, where ui(x) = ui(|x − ai |) represents
the utility i ∈ N receives when the policy position is x∈ X, andφ is anull
outcomewith ui(φ) = 0. Thus, i’s utility decreases with the distance between
the policy position and his ideal point, ai , and achieves its maximum at ai.
Also, we assume that ui(·) is quasi-concave.
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There are now three subsets of X that warrant special attention, XPI(x0),

XPS(x0) and XPO. Denoting thestatus quo policy outcomeby x0 ∈ X, these
three sets are defined thus:

XPI(x0) = {x ∈ X : ui(x) < ui(x0),∀i ∈ N}
is thePareto inferior set;

XPS(x0) = {x ∈ X : ui(x) ≥ ui(x0),∀i ∈ N}
is thePareto superior set. Note that XPI(x0) and XPS(x0) are shortened as XPI

and XPS respectively hereafter. ThePareto optimal setis defined in the usual
way as

XPO= {x ∈ X : /∃y ∈ X s.t. ui(y) ≥ ui(x),∀i ∈ N and ui(y) > ui(x)

for at least one i}.
The preceding three sets are static concepts. Since we want to study the in-
finite horizon veto game, we need their corresponding dynamic formulation.
Hence, we define apath, θ(x0, x1, · · · , xt, · · ·), as a sequence of policy posi-
tions, starting from period zero to period infinity. We letδi ∈ [0,1] denote the
discount factor i uses to discount future streams of utility. Next, letθ andθ ′
denoteθ(x0, x1, · · · , xt, · · ·) andθ(y0, y1, · · · , yt, · · ·) respectively, and we let
Ui(θ) ≡ ∑∞t=0 δ

t
i ui(xt) and Ui(θ

′) ≡ ∑∞t=0 δ
t
i ui(yt) denote the infinite stream

of utility player i gets from the pathsθ andθ ′, respectively. If Ui(θ) > Ui(θ
′)

for all i, then θ is dynamically Pareto superiorto θ ′; If U i(θ) < Ui(θ
′) for

all i, then θ is dynamically Pareto inferiorto θ ′; Then thedynamic Pareto
optimal setis simply XDPO = {θ ∈ X : /∃θ ′ ∈ X s.t. Ui(θ

′) ≥ Ui(θ),∀i ∈ N
and Ui(θ

′) > Ui(θ) for at least one i}.
Turning now to the bargaining game, if we take the example of n = 3, then

under a sequential recognition rule, the three voters have a predetermined
order for making proposals – first voter 1, then 2, then 3, then 1 again, and
so on – where xi denotes player i’s proposal. Thus, if voter 1 proposes x1 and
if neither 2 nor 3 veto, then x1 becomes the new status quo, at which point
player 2 has the opportunity to offer a new proposal. But, if either 2 or 3 veto,
x0 remains the status quo and 2 has the next move. In contrast, with a random
recognition rule, nature chooses the voter who will make a proposal at every
stage.

To analyse these two situations formally, we make use of the following
additional notation. First, we let T be the set ofstatesthat can be achieved in
a game – the nodes in the game’s extensive form. Next, we define astochastic
game, 0t = (St, π t, ψ t), where St is the set ofpure strategy n tuples(we do
not consider mixed strategies), whereπ t : St→ µ(T) is atransition function
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specifying for each st ∈ St a probability distributionπ t(st) on T, and where
ψ t : St→ X is anoutcome functionthat specifies for each st ∈ St an outcome
ψ t(st) ∈ X. Finally, we use S= 5t∈TSt to denote the collection of pure
strategy n tuples, where St = 5i∈Nst

i .

3. Results

In the next three subsections, we first characterize the necessary and sufficient
conditions for dynamically Pareto optimal paths. We then study stationary
Nash equilibria under the two recognition rules – sequential and random.
Finally, we discuss the implementation of a rotation scheme as an application
for unanimity rule.

3.1. Dynamic Pareto optimal paths

We begin with some general lemmas that help us subsequently characterize
the properties of equilibria. First,

Lemma 1: For all xt ∈ θ ∈ XDPO, xt ∈ XPO.

Proof: (By contradiction.) Supposeθ(x1, · · · , xs, · · · , xt, · · ·) ∈ XDPO, and
xs /∈ XPO, xt ∈ XPO, ∀t 6= s. Then, by the definition of XPO, for any
x ∈ XPO, we have ui(x) ≥ ui(xs), for all i and, ui(x) > ui(xs), for at least one
i. Denoteθ ′(x1, · · · , xs−1, x, xs+1, · · · , xt, · · ·) ≡ θ ′, then Ui(θ

′) ≥ Ui(θ), for
all i. Therefore,θ /∈ XDPO, which is a contradiction. Similarly, for any path
with more than one point outside XPO, by replacing them by points inside
XPO, we get a Pareto superior path. By induction, we can show that for all
xt ∈ θ ∈ XDPO, xt ∈ XPO. Q.E.D.

Lemma 1 says that any dynamically Pareto optimal path consists only of
points from the stationary Pareto optimal set. Intuitively, if a path has one
point outside the stationary Pareto set, we can always substitute a point inside
that set for it and make every player better off for that period and thus better
off for the infinite sequence.

However, the converse of Lemma 1 is not true: Paths that consist of points
inside the stationary Pareto optimal set are not necessarily dynamically Pareto
optimal paths. For example, suppose in a two dimensional policy space that
all players have quadratic utility functions of the form, ui(z) = −[(x1 −
ai)

2 + (y1 − bi)
2], where z= (x1, y1). Let the players’ ideal points be z1 =

(a1,b1) = (−2,0), z2 = (a2,b2) = (2,0), z3 = (a3,b3) = (0,3.46). Let
δ1 = δ2 = .5, δ3 = .7. We consider two dynamic paths. The first one,θ =
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(z1, z2, z1, z2, · · · , ), is a rotation of player 1 and 2’s ideal point. The second
one,θ ′ = (z, z, z, · · ·), where z= (−0.67,1.88), is a constant path inside
the static Pareto set. It is easy to verify that U1(θ) = U1(θ

′),= U2(θ) =
U2(θ

′), but U3(θ) < U1(θ
′). So althoughθ consists only of points inside the

static Pareto set, it is dominated byθ ′, and is therefore not dynamically Pareto
optimal.

To see then what types of paths are dynamically Pareto optimal, let a
constant pathbe a path that consists of the same point for every period. We
useθ(x) to denote constant pathθ(x, x, · · · , x, · · · , ), and we say thatθ is
equivalentto another pathθ ′ for player i, if Ui(θ) = Ui(θ

′).

Lemma 2: Any path that consists of only Pareto optimal points,θ(x0, x1, · · · ,
xt, · · ·), where xt ∈ XPO is equivalent to a constant pathθi(xi) for each player
i, where i∈ N and xi ∈ XPO.

Proof: First we want to show how a path,θ(x1, x2, · · · , xt, · · ·), where xt ∈
XPO, can be broken down to an equivalent constant path.

1

1− δi
ui(xi) =

∞∑
t=0

δt
i ui(x

t),

therefore,

ui(xi) = 1∑∞
t=0 δ

t
i
[ui(x0)+ δiui(x1)+ δ2

i ui(x2)+ · · ·]
=
∞∑
t=0

δt
i∑∞

t=0 δ
t
i
ui(xt)

≡
∞∑
t=0
αitui(xt),

where
∑∞

t=0 αit = 1, andαit ∈ (0,1). This means that ui(xi) ∈ co{ui(xt)}, i.e.,
ui(xi) is in the convex hull of ui(xt)’s. Next, we want to show that xi ∈ XPO.
Consider the two extreme cases for player i: since ui(xi) =∑∞t=0 αitui(xt),∀i ∈
N, and xt ∈ XPO,∀t, so for any player i, the best case occurs whenever xi = ai;
the worst case occurs whenever xi = aj, where aj = argmax{a−i }|a−i − ai |.
Therefore, on the line segment between ai and aj , there is at least one point
that is the solution to the problem, which we denote by xi. Since XPO is
convex, xi ∈ XPO. Q.E.D.

Note that generally there is more than one solution to the problem of finding
a constant path that is equivalent to the non-constant pathθ . We call the
set of all constant optimal paths that are equivalent toθ and that consist
of all Pareto optimal points thetrajectory of θ for i, denoted by TRi(θ) =
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{x ∈ XPO : ui(x) = (1− δi)Ui(θ)}. Note that TRi(θ) is just a segment of i’s
indifference curve inside the stationary Pareto set. From the quasiconcavity
of ui(·), it follows that TRi(·) is also quasiconcave. A closely related concept
of the trajectory for player i is player i’sbetter-than setof θ , Bi(θ) = {x ∈
XPO : ui(x) ≥ (1− δi)Ui(θ)}. The better-than set is the set of Pareto optimal
points that are Pareto superior to the constant equivalent path ofθ . The close
relationship of TRi(·) and Bi(·) can be seen from Observation 1.

Observation 1:

| ∩i∈N TRi(θ)| = 1 iff | ∩i∈N Bi(θ)| = 1.

Proof: We first prove by contradiction that| ∩i∈N TRi(θ)| = 1 ⇒ | ∩i∈N

Bi(θ)| = 1. There are two possible cases, (1)∩i∈NBi(θ) = φ, (2)∩i∈NBi(θ) =
B, where|B| > 1. Suppose (1) holds. Since TRi(θ) ⊂ Bi(θ), it follows that
∩i∈NBi(θ) = φ ⇒ ∩i∈NTRi(θ) = φ, which is a contradiction. Suppose (2)
holds, then B is a closed convex set with nonempty interior. Let∂B and B0

denote the boundary and interior of B respectively. Since| ∩i∈N TRi(θ)| = 1,
let∩i∈NTRi(θ) = {x}. It follows that x∈ ∂B, ∀y ∈ B0,ui(y) > (1− δi)Ui(θ)

for all i. Given that x= ∩i∈NTRi(θ),ui(x) = (1−δi)Ui(θ) for all i. Therefore,
ui(x) < ui(y) for all i, which contradicts x∈ XPO.

We now prove that|∩i∈NTRi(θ)| = 1⇐ |∩i∈NBi(θ)| = 1. Let∩i∈NTRi(θ) =
A. Let B = ∩i∈NBi(θ). By definition, A⊂ B. It suffices to show that|B| =
1 ⇒ B ⊂ A. Let B = {x}. It is straight forward to show that ui(x) =
(1− δi)Ui(θ) for all i. Therefore, x∈ A, which completes the proof.

Q.E.D.

We now want to characterize the sufficient conditions for a path to be dynam-
ically Pareto optimal.

Proposition 1: (1) ∀θ s.t. | ∩i∈N Bi(θ)| > 1, θ /∈ XDPO.
(2) ∀θ s.t. | ∩i∈N Bi(θ)| ≤ 1, θ ∈ XDPO if /∃θ ′ s.t. (i) and(ii) hold, where
(i) TRi(θ

′) ⊆ Bi(θ),∀i ;
(ii) TRi(θ

′) /⊆ TRi(θ) for at least one i.

Proof: Part (1) is obtained by taking any x∈ B, then the constant path
θ ′(x, x, x, · · ·) has the property that Ui(θ ′) ≥ Ui(θ), for all i. Thenθ ′ Pareto
dominatesθ . Soθ /∈ XDPO.

Part (2) follows from the definition of dynamic Pareto optimality. The
condition is equivalent to saying that there does not exist an x′, such that
ui(x′) = (1−δi)Ui(θ

′) ≥ (1−δi)Ui(θ) for all i, and ui(x′) = (1−δi)Ui(θ
′) >

(1− δi)Ui(θ) for at least one i. Q.E.D.
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Proposition 1 characterizes conditions for whether a path is dynamically Pa-
reto optimal or not. Given a path, we first compute the trajectories for each
player. If the intersection of their better-than set is neither empty nor a single-
ton, then it is not dynamically Pareto optimal, i.e., in XDPO. When it is empty
or consists of a singleton and there does not exist a path whose trajectories lie
inside its better-than set, it is dynamically Pareto optimal. In the case of con-
stant paths, paths that consist of a single point for all periods, the intersection
of the trajectories is a singleton, hence Corollary 1.

Corollary 1 : A constant pathθ(x) ∈ XDPO, if /∃θ ′ such that TRi(θ ′) ⊆
Bi(θ), ∀i and TRi(θ

′) ⊂ Bi(θ) for at least one i.

Proof: For a constant path,θ(x),∩i∈NTRi(θ) = {x}, hence, from Observation
1,∩i∈NBi(θ) = {x}. Then we apply Part (2) of Proposition 1. Q.E.D.

An extreme example of a constant path that is dynamically Pareto optimal
is θ(ai), where ai is player i’s ideal point.

3.2. Stationary Nash equilibrium and two recognition rules

In this section, we study the simplest Nash equilibria in this infinite horizon
veto game – stationary Nash equilibria. For simplicity, we relegate to Ap-
pendix A the formal description of the stochastic veto game used to model
unanimity rule and the formal characterization of equilibrium strategies for
this class of games. Omitting the superscript t and concentrating on the po-
sition of the constant path, which is subscripted by the proposer, we need to
define here only the indicator function g(·) in order to denote the results of a
player’s actions

gj(xi) =
{

1, if player j accepts xi
0, if player j vetos xi ,

if g(xi) =
∏

j

gj(xi) =
{

1, then xi passes
0, then xi fails.

The best-responses for proposers and voters are,
Proposer i:

si = xi,

xi ∈ argmaxx∈X{g(xi)[ui(xi)+ δivi(xi)] + (1− g(xi))[ui(x0)+ δivi(x0)]};
Voter j:

sj = gj(xi) ∈ {0,1},
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gj(xi) ∈ argmax{0,1}{g(xi)[uj(xi)+ δjvj(xi)]+ (1−g(xi))[uj(x0)+ δjvj(x0)]},
where vj(·) denotes player j’s continuation value.

In the stationary case, it follows from Lemma 1 that the dynamic Pareto
optimal set coincides with the stationary Pareto set. Now consider two cases:
the first is that the status quo is inside the Pareto optimal set, and the second
case is that the status quo is outside the Pareto set. In the first case, when only
stationary strategies are considered, the constant pathθ(x0) can be supported
as a Nash equilibrium. Since any defection from the status quo to another
constant path makes at least one player worse off, that player will veto the
proposal. Formally,

Observation 2: The following is a Nash equilibrium to the veto game:

xi = x0, ∀i ∈ N, x0 ∈ XPO;

gj(xi) =
{

1, if U j(θ(xi)) ≥ Uj(θ(x0))

0, otherwise.

Proof: If Proposer i proposesθ ′(xi), where xi 6= x0, then Uk(θ) > Uk(θ
′)

for at least one player, k, who will in turn veto the proposal, and the sta-
tus quo prevails. So the Proposer is not better off defecting. For voter j, if
Uj(θ(xi)) ≥ Uj(θ(x0)) and gj(xi) = 0, x0 prevails and he is worse off. If
Uj(θ(xi)) < Uj(θ(x0)) and gj(xi) = 1, he is not better off whether g(xi) =
1 or 0. Therefore he is not better off defecting. Q.E.D.

This observation says that when the status quo is inside the Pareto set, it
can be supported as a Nash equilibrium for it to remain there infinitely. Obvi-
ously, this is not a very interesting situation. (Note this is no longer true when
nonstationary strategies are admitted later in Section 3.3.) Now consider the
second case, where the status quo is outside the Pareto set, and consider the
two recognition rules – sequential and random.

We begin by offering an additional lemma (see Appendix B for proof),
that is useful in analysing the game under both settings.

Lemma 3: There exists a Nash equilibrium strategy to the veto game that
satisfies the following properties:

xi ∈ XSO, ∀i ∈ N;
gj(xi) = 0, if x i /∈ XSO, where XSO= XPO∩ XPS.

This lemma identifies a Nash equilibrium strategy in which the proposer of-
fers a policy in the intersection of the Pareto optimal and Pareto superior



626

sets, and the voters veto any other policy. The intuition behind this lemma
and its characterization of the proposer’s offer is two-fold. First, it should
be evident that the new policy must be an element of the Pareto superior
set, otherwise whoever prefers the status quo to the new policy will veto
the proposal. Second, given the voters’ continuation values, by moving in
the direction of the Pareto optimal set, the proposer can make some voters
better off without making the others worse off. Therefore, he can move to a
higher indifference curve by proposing a proposition inside the Pareto optimal
set while simultaneously giving each voter their continuation values. So the
proposer is never worse off by offering a policy in the intersection of the
Pareto superior set and the Pareto optimal set.

I. Sequential recognition rule
Under a sequential recognition rule, the proposer offers in equilibrium a pol-
icy closest to his ideal point that gives every other voter their continuation
values; voters accept any proposal that gives them their continuation values
and veto any proposal that gives them utility less than these values.

Proposition 2: The following is a stationary Nash equilibrium to the veto
game under the sequential proposing rule:

For Proposer i:
xi ∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj
=

k−1∑
l=0

δ1
j uj(x0)+

δk
j

1− δj
uj(xj),∀j 6= i,

where k=
{

j − i, if j > i
n− i + j, if j < i.

For voter j:

gj(xi) =
{

1, if
uj(xi)

1−δj ≥ v∗j (xi)

0, otherwise,

where

v∗j (xi) =
∑k−1

l=0
δl

j uj(x0)+
δk

j

1− δj
uj(xj).

Proof: See Appendix C.

This proposition gives equilibrium strategies for both the initial proposer
and all other voters. We use xj to denote voter j’s optimal proposal when
he becomes the proposer. Notice in particular that, like the results of most
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bargaining models, in equilibrium, the first proposition is accepted and lies in
the Pareto optimal set. Thus, punishments, i.e., vetos, are never implemented.
That every player is a blocking coalition, however, leads to a more “equitable”
outcome. That is, the kind of equilibria that we often find under majority rule,
in which a minimal winning coalition divides the pie among its members and
leaves all others with nothing, cannot occur here.

II. Random recognition rule
Under the random recognition rule, we get a similar result as under the se-
quential recognition rule – a stationary Nash equilibrium where the proposer
proposes a policy position closest to his own ideal point that still gives every
voter their continuation values. Voters accept any proposal that gives them
their continuation values, and veto any position that gives them less. More
formally, if we let vii ≡ ui(xi)

1−δi , then

Proposition 3: The following is a stationary Nash equilibrium under a ran-
dom recognition rule:

For Proposer i:
xi ∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj
= nuj(x0)+ δjvjj

n− (n− 1)δj
≡ v∗j ,∀j 6= i.

For Voter j:

gj(xi) =
{

1, if uj(xi)

1−δj ≥ v∗j
0, otherwise

Proof: See Appendix C.

Unlike outcomes under sequential recognition rule, then, and as expected,
all voters are treated equally here, without the bias from the order to propose.
In this sense, then, random recognition is more “equitable” than sequential
recognition.

3.3. Rotation schemes

To this point we have considered only strategies in which each person’s con-
tinuation value is calculated under the assumption that any Pareto optimal
policy remains in effect forever. Consider, though, the possibility that the
voters agree beforehand to rotate policies among themselves – choosing first
a policy that is “good” for voter 1, then one that is “good” for voter 2, and
so on. The question is whether, with Euclidean preferences, such a scheme
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has any advantages for all voters over a fixed policy and whether it can be
implemented under unanimity rule.

To address this question, we begin by representing a rotation scheme in a
n-person veto game as a dynamic path,θ(x1, x2, · · · , xn, x1, x2, · · · , xn, · · ·).
The trajectory of the path for player i is TRi(θ) = {x ∈ XPO : ui(x) =
(1− δi)Ui(θ)}, which can be simplified to TRi(θ) = {x ∈ XPO : ui(x) =∑n

j=1αjui(xj)}, whereαj = δ
j−1
i

1+δi+···+δn−1
i

. From Proposition 1, we know that

a rotation pathθ is dynamically Pareto optimal if the intersection of all tra-
jectories ofθ is either empty or consisted only of a singleton, and there is no
other path whose trajectories lies inside the better-than set ofθ . Thus,

Corollary 2 : A rotation schemeθ(x1, x2, · · · , xn, x1, x2, · · · , xn, · · ·) ⊂ XDPO

if | ∩i∈N Bi(θ)| ≤ 1, and/∃θ ′ such that TRi(θ ′) ⊆ Bi(θ)∀i, and TRi(θ
′) /⊆

TRi(θ) for at least one i, whereαj = δ
j−1
i

1+δi+···+δn−1
i

.

After we expand the possible paths to include the rotation schemes, a constant
path within the Pareto set is not necessarily dynamically Pareto efficient. We
compare the constant paths with rotation paths that also only consist of points
inside the Pareto optimal set and see when a rotation path is Pareto dominated
by a constant path, and when a constant path is Pareto inferior to a rotation
path. From Proposition 1, we obtain the following corollary:

Corollary 3 : A rotation schemeθ(x1, x2, · · · , xn, x1, x2, · · · , xn, · · ·) is Pareto
superior to any constant path if∩i∈NBi(θ) = φ; it is equivalent to the constant
pathθ(x) if ∩i∈NBi(θ) = {x}; and it is Pareto inferior to a constant path if
| ∩i∈N Bi(θ)| > 1.

This corollary says that if the intersection of the better-than set of a rotation
path is empty then there is no constant path that dominates it; if the intersec-
tion is a singleton, then the rotation path is equivalent to the constant path
at the singleton; if the intersection is neither empty nor a singleton, then a
constant path consisting of any point inside the intersection is Pareto superior
to the rotation path.

We illustrate Corollary 3 with the three person case, letθ(x, x, · · · , x, · · ·)
be the constant path, where x∈ XPO, and denote the rotation path by
θ ′(x1, x2, x3, x1, x2, x3, · · ·). Since Ui(θ) = 1

1−δi ui(x) and Ui(θ
′) = 1

1−δ3
i
ui(x1)

+ δi
δ3
i
ui(x2)+ δ2i

1−δ3
i
ui(x3), the comparison of the constant path and the rotation

path can be reduced to looking at the sign of Di, where Di = ui(x1) +
δiui(x2) + δ2

i ui(x3) − (1+ δi + δ2
i )ui(x), for i = 1,2,3. The rotation path
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is Pareto superior to the constant path if Di ≥ 0 for all i and Di > 0 for at
least one i; it is Pareto inferior to the constant path if Di ≤ 0 for all i and
Di < 0 for at least one i; they are equivalent if Di = 0 for all i.

For example, suppose in a two-dimensional policy space that all players
have quadratic utility functions of the form, ui(z) = −[(x1−ai)

2+(y1−bi)
2],

where z = (x1, y1). Let the players’ ideal points be A1 = (a1,b1) =
(−2,0), A2 = (a2,b2) = (2,0), and A3 = (a3,b3) = (0,3.46). Let
θ ′(A1,A2,A3) be the rotation of the three players’ ideal points. The tra-
jectories are

TR1(θ
′) = (x1 + 2)2+ y2

1 = 16
δ1+δ2

1

1+δ1+δ2
1
,

TR2(θ
′) = (x2 − 2)2+ y2

2 = 16
1+δ2

2
1+δ2+δ2

2
,

TR3(θ
′) = x2

3 + (y3− 3.46)2 = 16 1+δ3
1+δ3+δ2

3
.

Then, whenδ1 = 0.01, δ2 = δ3 = 0.9, ∩i Bi = φ, there is no constant
path Pareto superior to the rotation path; whenδ1 = 0.04, δ2 = 0.70, δ3 =
0.49, ∩i Bi = z = (−1.27,0.42), then the constant pathθ(z) is equivalent
to rotation pathθ ′; whenδ1 = 0.74, δ2 = 0.34, δ3 = 0.73, ∩i Bi = B with
|B| > 1, any constant pathθ(x) ∈ B is Pareto superior to the rotation pathθ ′,
such as when x= (0,1).

Insofar as implementing this scheme is concerned, its enforcement is as-
sured if a very bad default alternative prevails whenever any player defects
from the path by vetoing the next policy in the sequence. Let xd be the de-
fault outcome. We can formalize this idea in the following proposition (see
Appendix C for proof).

Proposition 4: When a veto causes the default outcome to be x0 /∈ XPO∪XPS,
a Pareto optimal rotation scheme can be implemented as a Nash equilibrium.

This proposition says that when defecting from the Pareto optimal rotation
path leads to a “bad” default outcome that makes everybody worse off, the
rotation scheme can be implemented in the sense that it is a Nash equilibrium
for every proposer to offer a policy along the path, and it is a Nash equilib-
rium for every voter to agree to any proposal along the path and to veto any
defection from the path.

4. Conclusions

For the most part, our results are not unexpected. The outcomes that prevail
parallel in form that prevail under the assumption that voters must divide



630

some fixed pie. First, equilibria are efficient in the sense that all outcomes
and all dynamic paths are Pareto optimal. Second, unanimity is more “equi-
table” than simple majority rule in that a majority cannot wholly expropriate
from a minority. Third, different recognition rules yield different equilibrium
outcomes. A sequential recognition rule is more advantageous to players who
propose early, whereas this advantage disappears under a random recognition
rule. Finally, Euclidean preferences allow for the implementation of a rotation
scheme that is enforced by a combination of unanimity rule and the threat
of a mutually disadvantageous default alternative that prevails if any voter
defects from his equilibrium strategy. More generally, our analysis establishes
that much of our intuition about unanimity rule does not require any specific
assumptions about transferable utility and the like for its validity. The results
that we might infer from pre-existing bargaining models hold when we extend
the analysis to Euclidean preferences and nontransferable utility.

It is of course true that there are a great many strategies (paths and punish-
ments) in addition to the ones we consider, and that any definitive argument
about the virtues of unanimity rule must consider them. At the very least,
then, this essay establishes a framework for a more comprehensive analysis
of this voting rule in a context – spatial preferences – that is more universally
applicable than the divide-the-dollar scenario of earlier bargaining models.
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Appendix A

We define the stationary strategy sets
∑
,
∑ = ∏i

∑
i =

∏
i
∏

t
∑t

i , where
∑t

i =
Prob(st

i); and its elementσ(s) = ∏t σ
t(st) = ∏i

∏
t σ

t
i (s

t
i). We define the stationary

Nash equilibrium in this game following McKelvey and Riezman (1990). For exis-
tence and characterization of stationary equilibrium, see Sobel (1971). That is, the
stationary Nash equilibrium is characterized by a set of values{vt} ⊆ Rn for each
stage of the game, and a strategy profileσ ∗ ∈∑, such that

a)∀t, σ ∗ is Nash equilibrium with payoff function Gt :∑t→ Rn defined by

Gt(σ t; v) = u(ψ t(σ t))+ ∑
y∈T

π t(σ t)(y)vy

= Eσ t[u(ψ t(st))+ ∑
y∈T

π t(st)(y)vy]
= ∑

st∈St
σ t(st)[u(ψ t(st))+ ∑

y∈T
π t(st)(y)vy].

b) ∀t, vt = Gt(σ t; v).

Next, we define the stochastic game that we use to model unanimity rule. Let
T = M0 ∪ D ∪ R∪ P∪ V be the set of states. An element of T will be denoted by
t. We use y to denote the possible states the game moves to. We use M0 to denote
Termination Game 0, D to denote theDiscounting Game, R to denote theRecognition
Game, P to denote theProposal Game, and V to denote theVoting Game.

Under the sequential recognition rule, the strategy sets, transition functions and
outcome functions for the game elements are defined as follows:

For t∈ M0 : St
i = {0},∀i ∈ N,

(Termination Game 0) π t(st)(0) = 1,

ψ t(st) = φ,∀st ∈ St.

If t ∈ M0, we are in the Termination Game 0, where the whole game terminates.
Here each player’s strategy set is{0}, the probability that the game stays at this stage
is one, and the null outcome prevails.

For t∈ D : St
i = {0},∀i ∈ N,

(Discounting Game) π t(st)(y) =
{
δ if y ∈ R,
1− δ if y ∈ M0,

ψ t(st) = φ,∀st ∈ St.
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If t ∈ D, we are in the Discounting Game, where each player’s strategy set is{0}.
With probability 1− δ the game proceeds to the Termination Game 0, where the
whole game terminates; with probabilityδ the game goes to the Recognition Game.
This is equivalent to saying that the players discount the future payoffs at the rateδ

(see McKelvey and Riezman, 1990). Next,

For t∈ R : St
i = {0},∀i ∈ N,

(Recognition Game) π t(st)(y) = 1, if y ∈ P

ψ t(st) = φ,∀st ∈ St.

The Recognition Game is indexed by t∈ R. We assume that there is an exogenously
given order of recognition; therefore, the strategy set of each player is{0}. The game
proceeds to the Proposal Game with probability 1, and the null outcome prevails.

For t∈ P : St
i =

{
{xi} if i = p,

{0} if i ∈ N− {p},
(Proposal Game) π t(st)(y) = 1, if y ∈ V,

ψ t(st) = φ,∀st ∈ St.

In the Proposal Game, we use p to denote the Proposer. The strategy set for the
Proposer is the set of policy positions{xi}, while the strategy set for each voter is
still {0}. The game proceeds to the Voting Game with probability one, and the null
outcome prevails in this game.

For t∈ V : St
i = {0,1},∀i ∈ N,

(Voting Game) π t(st)(y) = 1, y ∈ D,

ψ t(st) =


xt

i if st = 1,

∀st ∈ St.

x0 if st = 0,

In the Voting Game, each player can veto or accept (0 or 1) the new proposal. If the
new proposal, xi, is accepted by all players, it becomes the new status quo; if it is
vetoed by one or more players, the old status quo, x0, prevails. The game moves to
D with probability 1.

Appendix B

Lemma 3: There exists a Nash equilibrium strategy that satisfies the following prop-
erties:

xi ∈ XSO, ∀i ∈ N;
gj(xi) = 0, if x i /∈ XSO, where XSO= XPO∩ XPS.
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Proof of Lemma 3:

(1) For Proposer i, if he chooses xi ∈ XSO, the corresponding payoff is

G(xi) = g(xi)[ui(xi)+ δivi(xi)] + (1− g(xi))[ui(x0)+ δivi(x0)].
If he defects from this strategy, and proposes x′

i /∈ XSO, the voters, following their
equilibrium strategies, will veto this proposal, i.e., g(x′i) = 0. The status quo prevails
and the game moves to the next proposer. Therefore, his corresponding payoff is

G(x′i) = ui(x0)+ δivi(x0).

Take the difference of the two payoffs, we get

G(xi)−G(x′i) = g(xi)

[
ui(xi)

1− δi − ui(x0)− δivi(x0)

]
.

Supposeui(xi)
1−δi < ui(x0)+ δivi(x0), then

xi /∈ argmaxx∈XSO

ui(xi)

1− δi ,

This contradicts the assumption on the maximizing behavior of the players. There-
fore, ui(xi)

1−δi − ui(x0) − δivi(x0) ≥ 0. And since g(xi) ≥ 0, we have G(xi) ≥ G(x′i ).
So the proposer has no positive incentive to defect unilaterally from the equilibrium
proposal.

(2) For the voters, the strategy specified in the lemma is gj(xi) = 0,∀j, if x i /∈ XSO.
Suppose voter k defects from the specified strategy, i.e., gk(xi) = 1, if x i /∈

XSO. Since no other voter defects from the specified strategy, i.e., gj(xi) = 0,∀j 6=
k, if x i /∈ XSO, then g(xi) = ∏j 6=i gj(xi) = 0. Therefore, the unilateral defection of
any single voter can not change the outcome or his own payoff.

It follows that no voter will have a positive incentive to defect unilaterally from
the specified strategy in Lemma 1, which is the Nash equilibrium strategy. Q.E.D.

The following lemma will be used to prove Propositions 2 and 3.

Lemma 4: The optimal xi of the proposer’s constrained maximization problem is
obtained when all constraints are binding.

Proof of Lemma 4: Proposer i will make a proposal such that

xi ∈ argmaxx∈XSOg(xi)[ui(xi)+ δivi(xi)] + (1− g(xi))[ui(x0)+ δivi(x0)]
Since xi ∈ XSO, we have

ui(xi)+ δivi(xi) ≥ ui(x0)+ δivi(x0).

So Proposer i maximizes his objective function when g(xi) = 1.
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Next we specify when this condition is satisfied. For voter j, he chooses

gj(xi) ∈ argmax{0,1}g(xi)[uj(xi)+ δjvj(xi)] + (1− g(xi))[uj(x0)+ δjvj(x0)].
When gj(xi) = 1, he gets g(xi)[uj(xi) + δjvj(xi)] + (1− g(xi))[uj(x0) + δjvj(x0)].
When gj(xi) = 0, he gets uj(x0)+ δjvj(x0).

Therefore gj(xi) = 1, iff

g(xi)[uj(xi)+ δjvj(xi)] + (1− g(xi))[uj(x0)+ δjvj(x0)] ≥ uj(x0)+ δjvj(x0),

⇔ uj(xi)+ δjvj(xi) ≥ uj(x0)+ δjvj(x0).

It follows that g(xi) = 1 iff

uj(xi)+ δjvj(xi) ≥ uj(x0)+ δjvj(x0),∀j 6= i.

Also, we know that

ui(xi)+ δivi(xi) = ui(xi)

1− δi ,∀i ∈ N.

Then proposer i’s maximization problem is simplified to

maxxi∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj ≥ uj(x0)+ δjvj(x0),∀j 6= i.

Suppose
xi ∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj ≥ uj(x0)+ δjvj(x0),∀j 6= i,

and
xi ∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj ≥ uj(x0)+ δjvj(x0),∀j 6= i,m,

um(xi)

1− δm = um(x0)+ δmvm(x0).

It follows that um(xi) ≤ um(xi). Since both xi, xi ∈ XPO, and vj(xi) = vj(xi),∀j 6=
i,m, from the definition of Pareto optimality, proposer i is at least as well off from
the new proposal as from the old one, i.e., ui(xi) ≥ ui(xi). Nex let

x′i ∈ argmaxx′∈XSO[ui(x′i)]

s.t.
ujx′i)
1− δj ≥ uj(x0)+ δjvj(x0),∀j 6= i,m, l,

um(x′i)
1− δm = um(x0)+ δmvm(x0)
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ul(x′i)
1− δl = ul(x0)+ δlvl(x0).

Comparing the last two maximization problems, i is at least as well off from x′
i

as fromx. By converting the unbinding constraints into binding constraints one by
one, it follows that the policy position that maximizes the proposer’s own utility is
obtained by solving the constrained maximization problem when all constraints are
binding. Q.E.D.

Appendix C

In the subsequent text, we employ the following notations: vii ≡ ui(xi)
1−δi ,ui ≡ ui(x0).

Proposition 2: The following is a stationary Nash equilibrium to the veto game under
sequential proposing rule:

For t∈ P and i= p (Proposer i):

xi ∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj =
k−1∑
l=0

δ1
j uj(x0)+

δk
j

1− δj uj(xj),∀j 6= i,

where k=
{

j − i, if j > i

n− i + j, if j < i.

For t∈ V and j∈ N− {p} (Voter j):

gj(xi) =
{

1, if
uj(xi)

1−δj ≥ v∗j (xi)

0, otherwise,

where

v∗j (xi) =
k−1∑
l=0

δl
j uj(x0)+

δk
j

1− δj uj(xj).

Proof of Proposition 2:

The main steps to prove Proposition 2 follow the definition of stationary Nash equi-
librium in the previous section. We first specify the values associated with the equi-
librium strategies, and then show that these values are self-generating. The third step
is to show that the strategies specified in the proposition are Nash equilibria.
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The values of the games are defined below. The interpretations of these values go
back to the definitions of each game elements above.

For t∈ M0 : vt
i = v0

i = 0,∀i ∈ N.

(Termination Game 0)

For t∈ D : vt
i = δv(R)i ,∀i ∈ N.

(Discounting Game)

For t∈ R : vt
i = v(R)i ,∀i ∈ N.

(Recognition Game)

For t∈ P : vt
i(xi) = ui(xi)

1−δi , for i = t,

(Proposal Game) vt
j(xi) =∑k−1

l=0 δ
l
j uj(xi)+ δk

j
1−δj uj(xj), for j ∈ N− {t},

where

xi ∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1−δj =
∑k−1

l=0 δ
l
j (x0)+ δk

j
1−δj uj(xj),∀j ∈ N− {t}.

For t∈ V : vt
i =

∏
i st

iv
t
i(xi)+ (1−∏i st

i)[u(x0)+ δv(R)],∀i ∈ N.

(Voting Game)

The next step is to verify that these values are self-generating, i.e., that they cor-
respond to the payoffs under the equilibrium strategies. To do this, we plug the
equilibrium strategies and other game elements into the definition of G, and show
that they equal the corresponding values.

For t∈ M0: (Termination Game 0)

Gt(σ t, vt) = Eσ t[u(ψ t(st))+ ∑
y∈T

π t(st)(y)vy]
= u(ψ)+ π t(st)(y) · vt = vt.

For t∈ D: (Discounting Game)

Gt(σ t, vt) = Eσ t[u(ψ t(st))+∑π t(st)(y)vy]
= u(φ)+ δv(R) + (1− δ)v(0)
= δv(R) = vt.

For t∈ R: (Recognition Game)

Gt(σ t, vt) = Eσ t[u(ψ t(st))+ ∑
y∈T

π t(st)(y)vy]
= u(φ)+ π t(st)(y) · vt

= v(R) = vt.
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For t∈ P: (Proposal Game)
For i= t (Proposer i):

Gt
i(σ

t, vt
i) = E

σ
t [u(ψ t(st))+ ∑

y∈T
π t(st)(y)vy]

= ui(φ)+ 1 · ui(xi)
1−δi

= ui(xi)
1−δi

= vt
i(xi).

For j= N− {t} (Voter j):

Gt
j(σ

t; vt
j(xi)) = E

σ
t [u(ψ t(st))+ ∑

y∈T
π t(st)(y)vy]

= ui(φ)+ 1 · ui(xi)
1−δj

= uj(xi)

1−δj

=
k−1∑
l=0

δl
j uj(x0)+ δk

j
1−δj uj(xj)

= vt
j(xi).

For T∈ V: (Voting Game)

Gt(σ t, vt) = Eσ t[u(ψ t(st))+ ∑
y∈T

τ t(st)(y)vy]
= ∏

i
st
i[u(φ)+ 1 · vt

i(xi)] + (1−∏
i

st
i)[u(x0)+ 1 · v(D)]

= ∏
i

st
iv

t
i(xi)+ (1−∏

i
st
i)[u(x0)+ δv(R)]

= vt.

Next, we verify that the strategies specified in Proposition 2 are Nash equilibrium
strategies. We do this by showing that for each game element no player will benefit
from a unilateral one-shot deviation.

For t∈ P, we want to show that policy position xi is the equilibrium strategy for
Proposer i, where

xi ∈ argmaxx∈XSOui(xi)

s.t.
uj(xi)

1− δj =
k−1∑
l=0

δl
i uj(xi)+

δk
j

1− δj uj(xj),∀j 6= i.

The corresponding payoff is

Gt
i(σ

t; vt(xi)) = ui(xi)

1− δi .

If the proposer defects to any other pure strategy x′
i 6= xi,∀i ∈ N, there are two

possible consequences:
(i) ui(x

′
i) ≤ ui(xi) :
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he is not better off by defection, so he will not defect in this case.

(ii) ui(x′i) > ui(xi) :

in this case, if
uj(x′i)
1−δj =

∑k−1
l=0 δ

luj(xi)+ δk
j

1−δj uj(xj) still holds,∀j 6= i, then

xi /∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj =
k−1∑
l=0

δl
i uj(x0)+

δk
j

1− δj uj(xj),∀j 6= i,

but this contradicts the definition of xi. Therefore the n− 1 constraints cannot hold
simultaneously: at least one of them has to be violated. Since all voters still use their
equilibrium strategy, whoever gets a lower continuation value vetos the proposal.
Consequently, g(x′i) =

∏
j gj(x′i) = 0, and i’s payoff is

Gt
i(σ
′
i , σ

t
−i; vt

i(x
′
i)) = Eσ t[u(ψ t(st))+ ∑

y∈T
π t(st)(y)vy]

= uj(φ)+ 1 · [uj(x0)+ δivi(x0)]

=
k∑

l=0
δl

i ui(x0)+ δk+1
i

1−δi ui(xi)

=
k∑

l=0
δl

i [ui(x0)− ui(xi)] + ui(xi)
1−δi

≤ ui(xi)
1−δi .

Therefore, Gti(σ
′
i , σ

t
−i); vt

i(x
′
i)) ≤ Gt

i(σ
t; vt(xi)). So the proposer has no positive

incentive to defect unilaterally from his strategy specified in Proposition 2, which
means that it is a Nash equilibrium for the Proposer.

For t ∈ V, we want to check if voters’ strategies specified in the proposition are
Nash equilibrium strategies. This can be done in two steps:

(1) Suppose xi is such that

uj(xi)

1− δj ≥
k−1∑
l=0

δl
j uj(x0)+ δk

j uj(xj),

the corresponding equilibrium strategy is sj = gj(xi) = 1, and the payoff is

Gt
j(sj, vj) = g(xi)[uj(xi)+ δjvj(xi)] + (1− g(xi))[uj(x0)+ δjvj(x0)].

If he detects from his equilibrium strategy for one period, i.e., s′
j = gj(xi) = 0, player

j’s corresponding payoff will be

Gt
j(s
′
j, vj) = uj(xi)+ δjvj(x0).
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Therefore,

Gt
j(sj, vj)−Gt

j(s
′
j, vj) = g(xi)[uj(xi)+ δjvj(xi)− uj(x0)− δjvj(x0)]

= g(xi)

{
uj(xi)

1−δj − δj
[

k−1∑
l=0

δl
j uj(x0)+ δk

j uj(xj)

]}
≥ 0,

so voter j has no positive incentive to defect from his stated strategy in this situation.
(2) Suppose xi is such that

uj(xi)

1− δj <
k−1∑
l=0

δl
j uj(x0)+ δk

j uj(xj),

the corresponding equilibrium strategy for player j is sj = gj(xi) = 0, and the payoff
is

Gt
j(sj, vj) = uj(xi)+ δjvj(x0).

If he defects from his equilibrium strategy for one period, i.e., s′
j = gj(xi) = 1,

player j’s corresponding payoff will be

Gt
j(s
′
j, vj) = g(xi)[uj(xi)+ δjvj(xi)] + (1− g(xi))[uj(x0)+ δjvj(x0)].

Therefore,

Gt
j(sj, vj)−Gt

j(s
′
j, vj) = g(xi)[uj(x0)+ δjvj(x0)− uj(xi)− δjvj(xi)]

= g(xi)

{
δj

[
k−1∑
l=0

δl
j uj(x0)+ δk

j uj(xj)

]
− uj(xi)

1−δj

}
≥ 0,

so voter j has no positive incentive to defect from his stated strategy in this situation.
From (1) and (2), we know any voter j has no positive incentive to defect unilat-

erally from his strategies specified in Proposition 2, which in turn means that they
are Nash equilibrium strategies for voter j. Q.E.D.

Under the random recognition rule, let T= M0 ∪ D ∪ R ∪ P∪ V be the set of
states.

The strategy sets, transition functions and outcome functions for the game ele-
ments are the same as those in the sequential recognition rule.

Proposition 3: The following is a stationary Nash equilibrium under a random recog-
nition rule:

For Proposer i:
xi ∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj =
nuj(x0)+ δjvjj

n− (n− 1)δj
≡ v∗j ,∀j 6= i.
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For Voter j:

gj(xi) =
{

1, if
uj(xi)

1−δj ≥ v∗j
0, otherwise.

Proof of Proposition 3: The values of the games are defined below:

For t∈ M0 : vt
i = 0,∀i ∈ N.

(Termination Game 0)

For t∈ D : vt
i = δv(R)i ,∀i ∈ N.

(Discounting Game)

For t∈ R : vt
i = v(R)i ,∀i ∈ N.

(Recognition Game)

For t∈ P : vt
i(xi) = ui(xi)

1−δi , for i = t,

(Proposal Game) vt
j(xi) = nuj(x0)+δj vjj

n−(n−1)δj
for j ∈ N− {t},

where

xi ∈ argmaxx∈XSO[ui(xi)]
s.t.

uj(xi)

1−δj =
nuj(x0)+δjvjj
n−(n−1)δj

,∀j ∈ N− {t}.
For t∈ V : vt

i =
∏

i st
iv

t
i(xi)+ (1−∏i st

i)[u(x0)+ δv(R)],∀i ∈ N.

(Voting Game)

Then we verify that these values are self-generating, i.e., they equal the payoffs
of the game.

For t∈ M0: (Termination Game 0)

Gt(σ t, vt) = Eσ t[u(ψ t(st))+ ∑
y∈T

π t(st)(y)vy]
= u(φ)+ π t(st)(y) · vt = vt.

For t∈ D: (Discounting Game)

Gt(σ t, vt) = Eσ t[u(ψ t(st))+ ∑
y∈T

π t(st)(y)vy]
= u(ψ)+ δv(R) + (1− δ)v(0)
= δv(R) = vt.

For t∈ R: (Recognition Game)

Gt(σ t, vt) = Eσ t[u(ψ t(st))+ ∑
y∈T

π t(st)(y)vy]
= u(φ)+ π t(st)(y) · vt

= v(R) = vt.
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For t∈ P: (Proposal Game)
For i= t (Proposer i):

Gt(σ t; vt
i) = Eσ t[u(ψ t(st))+ ∑

y∈T
π t(st)(y)vy]

= ui(φ)+ 1 · ui(xi)
1−δi

= ui(xi)
1−δi

= vt
i(xi).

For j= N− {t} (Voter j):

Gt
j(σ

t; vt
j(xi)) = Eσ t[u(ψ t(st))+ ∑

y∈T
π t(st)(y)vy]

= ui(φ)+ 1 · uj(xi)

1−δj
= ui(xj)

1−δj
= nuj(x0)+δjvjj

n−(n−1)δj
,

= vt
j(xj).

For t∈ V: (Voting Game):

Gt(σ t, vt) = Eσ t[u(ψ t(st))+ ∑
y∈T

π t(st)(y)vy]
= ∏

i
st
i[u(φ)+ 1 · vt

i(xi)] + (1−∏
i

st
i)[u(x0)+ 1 · v(D)]

= ∏
i

st
iv

t
i(xi)+ (1−∏

i
st
i)[u(x0)+ δv(R)]

= vt.

The third step is to show that the strategies specified in Proposition 3 are Nash
equilibrium strategies, i.e., that for each game element no player will benefit from a
unilateral one-shot defection.

For t ∈ P: we want to show that policy position xi is an equilibrium strategy for
Proposer i, where:

xi ∈ argmaxx∈XSOui(xi)

s.t.
uj(xi)

1− δj =
nuj(x0)+ δjvjj

n− (n− 1)δj
≡ v∗j ,∀j ∈ N− {i}.

The corresponding payoff is

Gt
i(σ

t; vt(xi)) = ui(xi)

1− δi .

If the proposer defects to any other pure strategy x′
i 6= xi, and since ui(·) is monotone,

∀i ∈ N, there are two possible consequences.
(i) ui(x′i) ≤ ui(xi): he is not better off by defection, so he will not defect in this

case.



642

(ii) ui(x′i) > ui(xi): in this case, if
uj(x′i)
1−δj = v∗j still holds∀j 6= i, then

xi /∈ argmaxx∈XSO[ui(xi)]

s.t.
uj(xi)

1− δj = v∗j ,∀j 6= i,

but this contradicts the definition of xi. Therefore the n− 1 constraints cannot hold
simultaneously: at least one of them has to be violated. Since all voters still use their
equilibrium strategy, whoever gets a lower continuation value vetos the proposal.
Consequently, g(x′i) =

∏
j gj(x′i) = 0, and i’s payoff is

Gt
i(σ
′
i , σ

t
−i; vt

i(x
′
i)) = Eσ ′ [u(ψ t(s′))+∑y∈T π

t(s′)(y)vy]
= uj(φ)+ 1 · [uj(x0)+ δivi(x0)]
= uj(x0)+ δivi(x0).

Therefore,

Gt
i(σ
′
i , σ−i , ·)−Gt

i(σ, ·) = ui(x0)+ δivi(x0)− ui(xi)
1−δi

= ui(x0)+ δi nui(x0)+δi vii
n−(n−1)δi

− vii .

To show that xi is a Nash equilibrium strategy, it suffices to show that the above
expression is less than or equal to zero, i.e.,

uj(x0)+ δi nui(x0)+δi vii
n−(n−1)δi

≤ vii

⇔ (1+ nδ
n−(n−1)δ )ui(x0)) ≤ (1− δ2

n−(n−1)δ )vii

⇔ (n+ δ)ui(x0) ≤ (n− (n− 1)δ − δ2)
ui(xi)
1−δi

⇔ ui(x0) ≤ ui(xi),

which holds obviously, since xi ∈ XSO. Therefore, Gti(σ
′
i , σ

t
−i ; vt

i(x
′
i)) ≤ Gt

i(σ
t; vt(xi)).

So, the proposer has no positive incentive to defect from the stated strategy, which is
proven to be the Nash equilibrium strategy.

Last, we show that voter j’s strategy in Proposition 3 is Nash equilibrium strat-
egy. Since this part of the proof is similar to the corresponding part in the proof of
Proposition 2, we will not repeat it here. Q.E.D.

Proposition 4: When veto by a player causes the default outcome to be xd /∈ XPO∪XPS,
a Pareto optimal rotation schemeθ(x1, x2, · · · , xn, x1, x2, · · · , xn, · · ·) can be sup-
ported as a Nash equilibrium.

Proof: We want to show that whenθ(x1, x2, · · · , xn, · · ·) ∈ XDPO and x0 /∈ XPO∪
XPS, in equilibrium, for proposer i, xi = xi; and for voter j, gj(xi) = 1 if xi =
xi,gj(xi) = 0 if xi 6= xi.
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For proposer i, if xi = xi, his payoff function Gi(xi) = Ui(θ), given that everyone
else follows their equilibrium strategies. If xi 6= xi,G′i(xi) = Ui(θ)+ui(xd)−ui(xi).
Since ui(xd) − ui(xi) < 0, G′i(xi) < Gi(xi), i.e., he is worse off defecting from the
optimal rotation path. Therefore, it is a Nash equilibrium for any proposer to offer
the policy in the rotation path.

For voter j, when xi = xi, gj(xi) = 1 gives him Gj(xi) = Uj(θ), while gj(xi) = 0
gives him G′j(xi) = Uj(θ)+ ui(xd)− ui(xi) < Gj(xi), therefore, it is a Nash equilib-
rium for him to accept when the proposal is along the equilibrium path. Consider the
second case, when xi 6= xi, given that all other voters still follow their equilibrium
strategies, g(xi) = 0 regardless of voter j’s decision. Therefore, he is not better off
defecting from the specified strategy, which is a Nash equilibrium strategy. Q.E.D.




