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Summary. We present a family of mechanisms which implement Lindahl al-
locations in Nash equilibrium. With quasilinear utility functions this family of
mechanisms are supermodular games, which implies that they converge to Nash
equilibrium under a wide class of learning dynamics.
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1 Introduction

The presence of public goods seriously challenges traditional or “natural” solu-
tions for the allocation of private goods. Important policy questions, of whether
we can rely on the market to provide optimal amounts of public goods such as air
pollution, and how much we can rely on “natural” processes such as voluntary
contribution to solve environmental problems, boil down to fundamental issues
about human nature, i.e., about whether people are selfish or cooperative. The
vast experimental literature on voluntary provision of public goods shows that
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“although inexperienced subjects can be led to provide large contributions
in one-time decisions with the use of relevant discussions, one cannot rely
on these approaches as a permanent organizing feature without expecting
an eventual decline to self-interested behavior. ... Since 90 percent of
subjects seem to be responsive to private incentives, it is possible to
create new mechanisms which focus that self-interest toward the group
interest.” (p. 173, “Public Goods: A Survey of Experimental Research”
in The Handbook of Experimental Economics, 1995.)

These “new mechanisms”, i.e., incentive-compatible mechanisms for public
goods provision, are innovative allocation-taxation rules which can achieve a
Pareto-optimal allocation of resources with public goods. It is well known that
it is impossible to design a mechanism for making collective allocation deci-
sions, which is informationally decentralized (i.e., mechanisms which only use
the agents’ own messages), non-manipulable (or dominant strategy incentive-
compatible), and Pareto optimal1. There are many mechanisms which preserve
Pareto optimality at the cost of non-manipulability, some of which preserve
“some degree” of non-manipulability. In particular, some mechanisms have been
discovered which have the property that Nash equilibria are Pareto optimal2.
These can be found in the work of Groves and Ledyard (1977), Hurwicz (1979),
Walker (1981), Tian (1989), Kim (1993), Peleg (1996) and Falkinger (1996).

Nash implementation theory has mainly focused on establishing static prop-
erties of the equilibria. When a mechanism is implemented among real people,
i.e., boundedly rational agents, however, we expect the actual implementation
to be a dynamic process, starting somewhere off the equilibrium path. Follow-
ing Hurwicz (1972), one could interpret the Nash equilibrium strategies of a
game form as the stationary messages of some decentralized learning process.
The fundamental question concerning implementation of a specific mechanism
is whether the dynamic processes will actually converge to one of the equilibria
promised by theory.

The few theoretical papers on the dynamic properties of public goods mecha-
nisms have been using very specific learning dynamics to investigate the stability
of mechanisms. Muench and Walker (1983) and de Trenqualye (1988) study the
convergence of the Groves-Ledyard mechanism under Cournot best-reply dy-
namics. De Trenqualye (1989) and Vega-Redondo (1989) propose mechanisms
for which the Cournot best-reply dynamics is globally convergent to the Lindahl
equilibrium3 outcome. Kim (1993) proposes a mechanism which implements
Lindahl allocations and remains stable under the gradient adjustment process
given quasilinear utility functions. One exception is Cabrales (1999) who studies

1 This impossibility has been demonstrated in the work of Green and Laffont (1977), Hurwicz
(1975), Roberts (1979) and Walker (1980) in the context of resource allocation with public goods.

2 Other implementation concepts include perfect Nash equilibrium (Bagnoli and Lipman, 1989),
undominated Nash equilibrium (Jackson and Moulin, 1991), etc.

3 A Lindahl equilibrium for the public goods economy is characterized by a set of personal-
ized prices and an allocation such that utility and profit maximization and feasibility conditions are
satisfied.
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dynamic convergence and stability of the canonical mechanism in Nash imple-
mentation and the Abreu-Matsushima mechanism (1992) under “naive adaptive
dynamics”4.

Recent experimental studies on learning strongly reject the Cournot best-reply
learning model in favor of other models (e.g., Boylan and El-Gamal, 1993). So far
there has been no experimental investigation of the gradient adjustment process,
even though it has been used fairly extensively in the theoretical research on
stability of games (Arrow and Hurwicz, 1977). Experimental research on learning
is still far from reaching a conclusion with regard to a single “true” learning model
that describes all adaptive behaviors. Furthermore, there is strong evidence that
individual players adopt different learning rules under different circumstances
(El-Gamal and Grether, 1995). It is therefore desirable to identify mechanisms
which converge under a wide class of learning dynamics. This paper does so by
focusing on mechanisms which are supermodular games.

The class of supermodular games5 has been identified as having very robust
dynamic stability properties (Milgrom and Roberts, 1990): it converges to the
set of Nash equilibria that bound the serially undominated set under a wide class
of interesting learning dynamics, including Bayesian learning, fictitious play,
adaptive learning, Cournot best response and many others. Therefore, instead of
using a specific learning dynamic, we investigate whether we can find Nash-
efficient public goods mechanisms which are supermodular games.

The idea of using supermodularity as a robust stability criterion for Nash-
efficient mechanisms is not only based on its good theoretical properties, but also
on strong experimental evidence. Chen (forthcoming) examines all experiments
on incentive-compatible mechanisms for public goods. She finds that every ex-
periment which converge to the Nash equilibrium prediction is a supermodular
game, while none of the experiments which does not converge is a supermodular
game. She proves that among the Nash-efficient public goods mechanisms the
Groves-Ledyard mechanism is a supermodular game in quasilinear environments
when the punishment parameter is above a certain threshold, while none of the
Hurwicz (1979), Walker (1981) and Kim (1993) mechanisms is supermodular.
These results are consistent with the experimental findings. The question remains
whether we can find a Nash mechanism, which implements Lindahl allocation
in a general environment and has a robust stability property (i.e., supermodular)
in quasilinear environments.

In this paper, we propose a new family of mechanisms, which implement
Lindahl allocations in Nash equilibrium in a general environment and are also
supermodular games given quasilinear utility functions.

Section 2 introduces the environment. Section 3 discusses supermodular
games. Section 4 introduces the new family of mechanisms and proves the im-
plementation and stability results. Section 5 concludes the paper.

4 This is different from the adaptive learning in Milgrom and Roberts (1990). For a precise
definition see Cabrales (1999).

5 See Section 3 for a formal definition.
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2 A general public goods environment

We will assume that there is one private goodx , one public goody , andn ≥ 3
players, indexed by subscripti . Our results can be generalized to any number
of public goods. Production technology for the public good exhibits constant
returns to scale, i.e., the production functionf (·) is given byy = f (x ) = x/b for
someb > 0. The assumption of constant returns to scale is made to simplify the
production side of the story. Theorem 2 still holds under a general convex pro-
duction function, however, the stability results (Proposition 1) might also depend
on the parameters of the production function. Each player is characterized by a
consumption set which is the nonnegative orthant inR

2, Ci = R
2
+, a preference

relation�i on Ci , and an initial endowment of the private goodωx
i ∈ R

1. Let Ei

represent the set of individual preference orderings and initial endowments. We
formally defineEi as follows.

Definition 1 For each i ∈ N , let Ei = {(�i , ω
x
i ) :�i is transitive, complete,

convex, continuous, and strictly increasing in private good x , and ωx
i > 0.}

The i th agent’s characteristics are determined byei ∈ Ei . The space of
environments for the economy isE = Πn

i=1Ei . An environment for the economy
is represented bye ∈ E . The analysis for Nash implementation of the Lindahl
allocations will be carried out in this general environment, for anye ∈ E . To
prove the implementation result (Theorem 2) we need an additional assumption
on the preference relation6.

Assumption 1 The upper contour sets are in the interior of the consumption
space, i.e., for any (x0, y0) ∈ Ci , {(x , y) ∈ Ci |(x , y) �i (x0, y0)} ⊂ C ◦

i .

Intuitively Assumption 2 requires that indifference curves do not hit the
boundary of the consumption set. Many frequently used utility functions, such as
the Cobb-Douglas utility functions, satisfy Assumption 2. For the dynamic sta-
bility analysis we will restrict the environment further to the class of quasilinear
preferences. Note although the class of quasilinear preferences does not satisfy
Assumption 2 it is straightforward to extend the implementation theorem to this
class of environment.

Definition 2 E Q = {(�i , ω
x
i ) ∈ E :�i is representable by a C 2 utility function

of the form vi (y) + xi such that Dvi (y) > 0 and −∞ < D2vi (y) < 0 for all y >
0, and ωx

i > 0}, where Dk is the k th order derivative.

An economic mechanism is defined as a non-cooperative game form played
by the agents. The game is described in its normal form. In all mechanisms
considered in this paper, the implementation concept used is Nash equilibrium.
In the Nash implementation framework the agents are assumed to have complete
information about the environment while the designer does not know anything
about the environment.

6 I thank William Thomson for suggesting this.
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3 Supermodular games

We first define supermodular games and review their stability properties. Then we
discuss alternative stability criteria and their relationship with supermodularity.

Supermodular games are games in which each player’s marginal utility of in-
creasing her strategy rises with increases in her rival’s strategies, so that (roughly)
the player’s strategies are “strategic complements”. Supermodular games need an
order structure on strategy spaces, a weak continuity requirement on payoffs, and
complementarity between components of a player’s own strategies, in addition to
the above-mentioned strategic complementarity between players’ strategies. Sup-
pose each playeri ’s strategy setSi is a subset of a finite-dimensional Euclidean
spaceRki . ThenS ≡ ×n

i=1Si is a subset ofRk , wherek =
∑n

i=1 ki .

Definition 3 A supermodular game is such that, for each player i , Si is a
nonempty sublattice of R

ki , ui is upper semi-continuous in si for fixed s−i and
continuous in s−i for fixed si , ui has increasing differences in (si , s−i ), and ui is
supermodular in si .

Increasing differences says that an increase in the strategy of playeri ’s ri-
vals raises her marginal utility of playing a high strategy. The supermodular-
ity assumption ensures complementarity among components of a player’s own
strategies. Note it is automatically satisfied whenSi is one-dimensional. As the
following theorem indicates supermodularity and increasing differences are easily
characterized for smooth functions inRn .

Theorem 1 (Topkis, 1978) Let ui be twice continuously differentiable on Si .
Then ui has increasing differences in (si , sj ) if and only if ∂2ui /∂sih∂sjl ≥ 0 for
all i /= j and all 1 ≤ h ≤ ki and all 1 ≤ l ≤ kj ; and ui is supermodular in si if
and only if ∂2ui /∂sih∂sil ≥ 0 for all i and all 1 ≤ h < l ≤ ki ;

Supermodular games are of interest particularly because of their very robust
stability properties. Milgrom and Roberts (1990) proved that in these games
the set of learning algorithms consistent with adaptive learning converge to the
set bounded by the largest and the smallest Nash equilibrium strategy profiles.
Intuitively a sequence is consistent with adaptive learning if players “eventually
abandon strategies that perform consistently badly in the sense that there exists
some other strategy that performs strictly and uniformly better against every
combination of what the competitors have played in the not too distant past”7.
This includes a wide class of interesting learning dynamics, such as Bayesian
learning, fictitious play, adaptive learning, Cournot best-reply and many others.

Since experimental evidence suggests that individual players tend to adopt
different learning rules (El-Gamal and Grether, 1995), instead of using a specific
learning algorithm to study stability, one can use supermodularity as a robust
stability criterion for games with a unique Nash equilibrium. For supermod-
ular games with a unique Nash equilibrium, we expect any adaptive learning

7 For a formal definition, see Milgrom and Roberts (1990).
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algorithm to converge to the unique Nash equilibrium, in particular, Cournot
best-reply, fictitious play and adaptive learning. Compared with stability analysis
using Cournot best-reply dynamics, supermodularity is much more robust and
inclusive in the sense that it implies stability under Cournot best-reply and many
other learning dynamics mentioned above.

There are two caveats for using supermodularity as a robust stability criterion.
First, for supermodular games with multiple Nash equilibria, adaptive learning
algorithms will converge to the set bounded by the largest and the smallest
Nash equilibrium strategy profiles, however, players might not be able to learn
to coordinate on a particular equilibrium. Van Huyck, Battalio and Beil (1990)
examine a finitely repeated coordination game with seven Nash equilibria, which
is supermodular. They found that with 14 to 16 players play tended to converge to
the Pareto-dominated Nash equilibrium where each player chooses the minimum
effort level. With two players, however, for 12 out of 14 pairs play converged to
the Pareto-dominant Nash equilibrium where each player chooses the maximum
effort level. Therefore, the equilibrium selection problem might depend on the
group size and many other factors. Supermodularity does not help to predict
which equilibrium will be selected.

Second, supermodularity is sufficient but not necessary for convergence. This
implies that supermodular mechanisms with a unique Nash equilibrium ought to
converge to the Nash equilibrium prediction fairly robustly, but mechanisms
which are not supermodular could still converge to its equilibrium under some
learning algorithms. In particular, supermodular games with a unique pure strat-
egy Nash equilibrium is dominance solvable, but not vice versa. The robust
convergence argument for supermodular games also applies to the larger class of
dominance solvable games (Milgrom and Roberts, 1991). Dominance solvability
is more inclusive but harder to check than supermodularity.

For a complete characterization of the dynamic stability of mechanisms, it is
desirable to find both sufficient and necessary conditions for convergence under
a wide range of learning dynamics. Since learning can differ from one context to
another, we would need extensive experimental studies of human learning behav-
ior under different mechanisms and the resulting repertoire of algorithms, cali-
brated against human responses, to cover various contexts. This is largely still an
ongoing research enterprise. Once we have the accurately calibrated algorithms,
we can restrict ourselves to the stability analysis based on these algorithms, and
perhaps eventually characterize the sufficient and necessary conditions for these
learning dynamics to converge.

4 A new family of mechanisms

Kim (1986) has shown that for any game form implementing Lindahl allocations
there does not exist a decentralized adjustment process which ensures local sta-
bility of Nash equilibria in certain classes of environments. Chen (forthcoming)
proves that none of the three existing game forms which implement Lindahl allo-
cations in Nash equilibrium, Hurwicz (1979), Walker (1981) and Kim (1993), is
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supermodular in quasilinear environments. The question remains whether we can
find a mechanism which implements the Lindahl allocations in Nash equilibrium
in a general environment and also possesses a robust stability property at least
with quasilinear preferences. In this section we provide a positive answer to this
question by presenting a family of mechanisms which fulfill both roles.

In the mechanisms defined below the strategy space is two-dimensional. The
new family of mechanisms,Γ γ,δ, is defined by two free parameters,γ and δ.
Note whenγ = 1 andδ = 0 we obtain the Kim (1993) mechanism.

Definition 4 For mechanism Γ γ,δ , the strategy space of player i is Si ⊂ R
2 with

generic element (mi , zi ) ∈ Si . The outcome function of the public good and the
net cost share of the public good for player i are

Y (m, z ) =
n∑

k=1

mk ,

Ti (m, z ) = Pi (m, z ) · Y (m, z ) +
1
2

(zi −
n∑

k=1

mk )2 +
δ

2

∑
j/=i

(zj −
n∑

k=1

mk )2,

where Pi (m, z ) =
b
n

− γ
∑
j/=i

mj +
γ

n

∑
j/=i

zj , γ > 0 and δ ≥ 0.

The outcome functionY (m, z ) is the level of public good, andTi (m, z ) is
the cost share of playeri in terms of private good. A player’s strategymi is
interpreted as the increment (or decrement) of the public good playeri would
like to add to (or subtract from) the amounts proposed by others. Strategyzi is
interpreted as playeri ’s estimation for the public good level. If her estimation
for the total level of public good is different from the sum of each individual’s
increment, she will be penalized by the quadratic difference,1

2(zi − ∑n
k=1 mk )2;

furthermore, she will be penalized by a constant multiple of the sum of the
quadratic differences of other players,δ

2

∑
j/=i (zj − ∑n

k=1 mk )2. Under the mech-
anismΓ γ,δ, since a player’s choice of (mi , zi ) does not affect her price for the
public good,Pi (m, z ), strictly increasing preferences in private goodxi implies
that a rational player will send her estimation of the sum of proposals,zi , the same
as the actual sum of proposals, that is,zi =

∑n
k=1 mk ≡ y , for all i . Therefore, in

equilibrium the two quadratic punishment terms drop out.
Theorem 2 establishes that in a general environment the mechanismΓ γ,δ

implements the Lindahl allocations in Nash equilibrium.

Theorem 2 The mechanism Γ γ,δ implements the Lindahl allocations in Nash
equilibrium for any e ∈ E.

Proof. See Appendix. ��
Theorem 2 implies that in a general environment the Nash equilibrium of

the mechanismΓ γ,δ implements Lindahl allocations. Therefore, in equilibrium,
the mechanismΓ γ,δ is efficient, balanced and individually rational. A drawback
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of the mechanism is that off the equilibrium path, the mechanism might not
be balanced. How serious this drawback is depends on how quickly the system
converges when implemented, which is largely an empirical question.

Since Assumption 2 is needed to prove Theorem 2, it does not apply to
the class of quasilinear preferences. However, it is straightforward to extend
Theorem 2 to the class of quasilinear preferences.

Corollary 1 The mechanism Γ γ,δ implements the Lindahl allocations in Nash
equilibrium for any e ∈ E Q .

Proof. See Appendix. ��
Corollary 2 The mechanism Γ γ,δ has a unique Nash equilibrium for any e ∈ E Q .

Proof. See Appendix. ��
If we restrict ourselves to the class of quasilinear preferences, the mechanism

Γ γ,δ has a particularly attractive stability property, i.e., within certain parameter
ranges, it is a supermodular game. Therefore, it converges to the unique Nash
equilibrium under a wide class of learning dynamics.

Proposition 1 The mechanism Γ γ,δ is a supermodular game for any e ∈ E Q if
and only if

δ ∈ [1 − min
i∈N

∂2vi

∂y2
, +∞) and γ ∈ [1 − min

i∈N

∂2vi

∂y2
+ (n − 1)δ, nδ].

Proof. (i) First, we prove that ifδ ∈ [1 − mini∈N
∂2vi
∂y2 , +∞) andγ ∈ [1 −

mini∈N
∂2vi
∂y2 + (n − 1)δ, nδ], thenΓ γ,δ is a supermodular game for anye ∈ E Q .

SinceSi ⊂ R
2, it is a sublattice. By Definition 2, payoff functionui (xi , y) =

vi (y)+ωi −Ti (m, z ) is C 2 on Si , therefore, the continuity requirement is trivially
satisfied.

Since
∂2ui

∂mi ∂zi
= 1,∀i ,

by Theorem 1, the payoff functionui is supermodular insi .
To show thatui has increasing differences in (si , s−i ), we need to check four

conditions.
Sinceγ ≥ 1 − mini∈N

∂2vi
∂y2 + (n − 1)δ, we have

∂2ui

∂mi ∂mj
=

∂2vi

∂y2
+ γ − 1 − (n − 1)δ ≥ 0,∀i /= j .

Similarly, sinceγ ≤ nδ, we have

∂2ui

∂mi ∂zj
= −γ

n
+ δ ≥ 0,∀i /= j .
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The two conditions,γ ≥ 1− mini∈N
∂2vi
∂y2 + (n − 1)δ andγ ≤ nδ can be satisfied

simultaneously as long asδ ∈ [1 − mini∈N
∂2vi
∂y2 , +∞) holds.

The last two conditions are straight forward to check:

∂2ui

∂zi ∂mj
= 1,∀i /= j ; and

∂2ui

∂zi ∂zj
= 0,∀i /= j .

By Theorem 1, the payoff functionui has increasing differences. Therefore,Γ γ,δ

is a supermodular game for anye ∈ E Q .
(ii) Next, we prove that ifΓ γ,δ is a supermodular game for anye ∈ E Q , then
δ ∈ [1 − mini∈N

∂2vi
∂y2 , +∞) andγ ∈ [1 − mini∈N

∂2vi
∂y2 + (n − 1)δ, nδ].

If Γ γ,δ is a supermodular game for anye ∈ E Q , then ui has increasing
differences in (si , s−i ). Sinceui is C 2, by Theorem 1,ui has increasing differences
in (si , s−i ) if and only if all of the following four inequalities hold,

∂2ui

∂mi ∂mj
≥ 0,

∂2ui

∂mi ∂zj
≥ 0,

∂2ui

∂zi ∂mj
≥ 0, and

∂2ui

∂zi ∂zj
≥ 0, ∀i /= j .

From part (i), we know that the first two inequalities imply that

nδ ≥ γ ≥ 1 − min
i∈N

∂2vi

∂y2
+ (n − 1)δ,

which in turn implies thatδ ∈ [1 − mini∈N
∂2vi
∂y2 , +∞). Q.E.D.

Since the new mechanism is supermodular with a proper choice of param-
eters under a class of quasilinear preferences, it has a robust dynamic stability
property. Therefore, compared with the Groves-Ledyard mechanism, it has the
advantage of implementing Lindahl allocations. Compared with other mecha-
nisms implementing the Lindahl allocations, it has a robust stability property.
Compared with the Abreu-Matsushima mechanism which is dominance-solvable
but with a huge message space, the new mechanism is simple with only a two-
dimensional message space. Note in this entire class of Nash-efficient public
goods mechanisms only the Groves-Ledyard mechanism and the Walker mecha-
nism are balanced both on and off the equilibrium path. All others are balanced
only in equilibrium.

Under the new mechanism as well as the Groves-Ledyard mechanism, when
choosing parameters to induce supermodularity, the planner needs to know the
smallest second partial derivative of the players’ utility for public goods in the
society, i.e., mini∈N

∂2vi
∂y2 , for all possible levels of the public good,y . Note that

by Definition 1 this term is bounded below. Note also that this is state-dependent
information. In Nash implementation theory we usually assume that the planner
does not have any information about the players’ preferences. In that case, even
though there exist a set of stable mechanisms among a family of mechanisms,
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the planner does not have the information to choose the right one. Therefore,
in order to choose parameters to implement the stable set of mechanisms, the
planner needs to have some information about the distribution of preferences and
an estimate about the possible range of public goods level.

5 Concluding remarks

So far Nash implementation theory has mainly focused on establishing static
properties of the equilibria. However, experimental evidence suggests that the
fundamental question concerning any actual implementation of a specific mecha-
nism is whether decentralized dynamic learning processes will actually converge
to one of the equilibria promised by theory. Based on its attractive theoretical
properties8 and the supporting evidence for these properties in the experimental
literature, we focus on supermodularity as a robust stability criterion for Nash-
efficient public goods mechanisms.

We present a new family of Nash mechanisms which implement Lindahl
allocations in a general environment; with quasilinear utility functions the new
family of mechanisms are supermodular games given a suitable choice of param-
eters. Thus theoretically the new mechanisms have similar stability properties as
the Groves-Ledyard mechanism and are also individually rational.

Two aspects of the convergence and stability analysis in this paper warrant
attention. First, supermodularity is sufficient but not necessary for convergence to
hold. It is possible that a mechanism could fail supermodularity but still behaves
well on a class of adjustment dynamics, such as the Kim mechanism. Secondly,
The stability analysis in this paper, like other theoretical studies of the dynamic
stability of Nash mechanisms, have been restricted to quasilinear utility functions.
It is desirable to extend the analysis to other more general environments. The
maximal domain of stable environments remains an open question.

Appendix

To prove Theorem 2, we need Lemmas 1 to 5.

Lemma 1 If (m̄, z̄ ) is a Nash equilibrium of Γ γ,δ for e ∈ E, then z̄i =
∑n

k=1 m̄k

and Ti (m̄, z̄ ) = Pi (m̄, z̄ ) · Y (m̄, z̄ ), for all i .

Proof. Since (m̄, z̄ ) is a Nash equilibrium, then for eachi ,

[ωx
i − Ti (m̄, z̄ ), Y (m̄, z̄ )] �i [ωx

i − Ti (m̄, z̄−i , zi ), Y (m̄, z̄−i , zi )]

for all zi . Since preferences are strictly increasing in private goodx , for eachi ,

8 In particular, Milgrom and Roberts (1990) have shown that a supermodular game converges under
a wide class of learning dynamics, including Bayesian learning, fictitious play, adaptive learning,
Cournot best response and many others.
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z̄i =
n∑

k=1

m̄k .

It follows that
Ti (m̄, z̄ ) = Pi (m̄, z̄ ) · Y (m̄, z̄ ).

Q.E.D.

Lemma 2 Continuity, local nonsatiation and convexity of preferences, and con-
tinuity of Ti (m, z ) in (mi , zi ) imply that Xi (m̄, z̄ ) + Ti (m̄, z̄ ) = ωx

i for all i , where
(m̄, z̄ ) is a Nash equilibrium of Γ γ,δ for e ∈ E.

Proof. See Groves and Ledyard (1977) p.799. ��
Lemma 3 Let Ai = {(Xi , Y ) ∈ Ci |(Xi , Y ) �i (X̄i , Ȳ )}. If �i are complete, tran-
sitive and convex, then Ai is convex.

Proof. Take (Xi , Y ) ∈ Ci , (X̄i , Ȳ ) ∈ Ci and (X
′
i , Y

′
) ∈ Ci . Suppose (Xi , Y ) �i

(X̄i , Ȳ ) and (X
′
i , Y

′
) �i (X̄i , Ȳ ). Let X̂i = αXi + (1− α)X

′
i , Ŷ = αY + (1− α)Y

′
,

whereα ∈ [0, 1]. Then (X̂i , Ŷ ) ∈ Ci sinceCi is a convex set. We next want
to show that (̂Xi , Ŷ ) �i (X̄i , Ȳ ). Since preferences are complete, without loss of
generality, we can assume (Xi , Y ) �i (X

′
i , Y

′
). By convexity of preferences, we

have (̂Xi , Ŷ ) �i (X
′
i , Y

′
), which by transitivity yields (̂Xi , Ŷ ) �i (X̄i , Ȳ ). Q.E.D.

To prove the Pareto optimality of the Nash equilibrium, we need a minimum
wealth result, i.e., no player is in her minimum wealth condition in equilibrium.
In equilibrium although any strictly preferred point must be outside the budget
set, since the budget set is strictly convex along the boundary the separating
hyperplane may contain strictly preferred points. This possibility is ruled out by
Lemma 4.

Lemma 4 Under Assumption 2, if (m̄, z̄ ) is a Nash equilibrium of the mechanism
Γ γ,δ , for each i there exists (mi , zi ) such that [Xi (m̄−i , z̄−i , mi , zi ),
Y (m̄−i , z̄−i , mi , zi )] ∈ Ci and Xi (m̄−i , z̄−i , mi , zi )+Ti (m̄−i , z̄−i , mi , zi )<Xi (m̄, z̄ )+
Ti (m̄, z̄ ).

Proof. Let X̄i = Xi (m̄, z̄ ) and Ȳ = Y (m̄, z̄ ). Assumption 2 implies that̄Xi > 0
and Ȳ > 0. Let mi = m̄i andzi = Ȳ +

√
2ε for someε > 0 such thatX̄i − ε > 0.

Since (m̄, z̄ ) is a Nash equilibrium, we haveTi (m̄, z̄ ) = Pi (m̄, z̄ ) · Y (m̄, z̄ ) by
Lemma 1, and

Ti (m̄−i , z̄−i , mi , zi ) = Ti (m̄, z̄ ) +
1
2

(zi − Ȳ )2 = Ti (m̄, z̄ ) + ε.

Let
X̂i = ωi − Ti (m̄−i , z̄−i , mi , zi ) = ωi − Ti (m̄, z̄ ) − ε = X̄i − ε > 0. (1)

Therefore, there existsσ > 0 such that

Xi (m̄−i , z̄−i , mi , zi ) = X̂i − σ > 0. (2)
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By constructionY (m̄−i , z̄−i , mi , zi ) = Ȳ > 0, therefore, [Xi (m̄−i , z̄−i , mi , zi ),
Y (m̄−i , z̄−i , mi , zi )] ∈ Ci . Eq. (1) and (2) imply that

Xi (m̄−i , z̄−i , mi , zi ) + Ti (m̄−i , z̄−i , mi , zi ) = ωi − σ < ωi = Xi (m̄, z̄ ) + Ti (m̄, z̄ ).

Q.E.D.

Lemma 5 If (m̄, z̄ ) is a Nash equilibrium of Γ γ,δ for e ∈ E, then [(ωx
i −

Ti (m̄, z̄ ))n
i=1, Y (m̄, z̄ )] is a Pareto optimal allocation for e ∈ E.

Proof. 9: Each player must make three decisions: she must choose a private
good consumption bundleXi ∈ R

1, and a pair of messages (mi , zi ) to send to the
planner. Nash behavior implies that given others’ decisions a player will choose
a decision triple (Xi , mi , zi ) to maximize preferences over consumption bundle
(Xi , Y ) subject to a budget constraint.

We define thebudget correspondence of player i by

βi (m−i , z−i ) = {(X ∗
i , m∗

i , z ∗
i ) ∈ R

1 × Si |(X ∗
i , Y (m−i , z−i , m∗

i , z ∗
i ))

∈ Ci , X ∗
i + Ti (m−i , z−i , m∗

i , z ∗
i ) ≤ ωx

i }.

The decision correspondence of player i is defined by

ηi (m−i , z−i ) = {(X ∗
i , m∗

i , z ∗
i ) ∈ βi (m−i , z−i )|(X ∗

i , Y (m−i , z−i , m∗
i , z ∗

i ))

�i (Xi , Y (m, z ))

for all (Xi , mi , zi ) ∈ βi (m−i , z−i )}.

We now prove Lemma 5 in seven steps. LetȲ ≡ Y (m̄, z̄ ).

1. . X̄i + Ti (m̄, z̄ ) = ωx
i for all i (Lemma 2).

2. For any (Xi , Y ) ∈ Ci , there is a pair (mi , zi ) such thatY = Y (m̄−i , z̄−i , mi , zi ).
Simply let mi = Y − ∑

j/=i m̄j .
3. (Xi , Y ) �i (X̄i , Ȳ ), Y = mi +

∑
j/=i m̄j implies Xi + Ti (m̄−i , z̄−i , mi , zi ) ≥

X̄i + Ti (m̄, z̄ ).
If not, Xi + Ti (m̄−i , z̄−i , mi , zi ) < ωx

i (by 1). Continuity, local nonsatia-
tion, convexity of preferences and continuity ofTi (m, z ) in (m, z ) im-
ply that there is a triple (X

′
i , m

′
i , z

′
i ) such that (X

′
i , Y (m̄−i , z̄−i , m

′
i , z

′
i )) ∈

Ci , X
′
i + Ti (m̄−i , z̄−i , m

′
i , z

′
i ) ≤ ωx

i and (X
′
i , Y (m̄−i , z̄−i , m

′
i , z

′
i )) �i (X̄i , Ȳ ).

Then (X̄i , m̄i , z̄i ) �∈ ηi (m−i , z−i ), which is a contradiction.
4. (Xi , Y ) �i (X̄i , Ȳ ), Y = mi +

∑
j/=i m̄j implies Xi + Ti (m̄−i , z̄−i , mi , zi ) >

X̄i + Ti (m̄, z̄ ).
If not, (X̄i , m̄i , z̄i ) �∈ ηi (m−i , z−i ), which is a contradiction.

5. (Xi , Y ) �i (X̄i , Ȳ ) implies Xi + ti · Y ≥ X̄i + ti · Ȳ .
Let T̂i (Y ; m−i , z ) = Pi (m−i , z ) · Y + 1

2(Y − zi )2 + δ
2

∑
j/=i (Y − zj )2. Define

ti = ∂T̂i (Y ; m−i , z )/∂Y = Pi + (Y − zi ) + δ
∑

j/=i (Y − zj ). Let Ai = {(Xi , Y ) ∈
Ci |(Xi , Y ) �i (X̄i , Ȳ )}. By Lemma 3,Ai is convex. And (̄Xi , Ȳ ) is in the

9 The proof is similar to Groves and Ledyard’s (1977, p. 799).
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boundary ofAi . Let Bi = {(Xi , Y ) ∈ Ci |Xi + T̂i (Y ; m−i , z ) ≤ ωx
i }. SinceT̂i (·)

is a convex function ofY , Bi is convex. By 1, (̄Xi , Ȳ ) is in the boundary of
Bi . By 4, A◦

i ∩B◦
i = φ, that is, the intersection of the interior of setAi andBi

is empty. Thus there exists a hyperplane through (X̄i , Ȳ ) separatingAi andBi ,
and the vector (1, ti ) defines the hyperplane. It follows that (Xi , Y ) �i (X̄i , Ȳ )
implies Xi + ti · Y ≥ X̄i + ti · Ȳ .

6. (Xi , Y ) �i (X̄i , Ȳ ) implies Xi + ti · Y > X̄i + ti · Ȳ .
Suppose not. By 5,Xi + ti · Y = X̄i + ti · Ȳ . By 2, 5 and Lemma 4, there
exists (̂X , Ŷ ) ∈ Ci such thatX̂i + ti · Ŷ < X̄i + ti · Ȳ . Let G = {(X

′
i , Y

′
) ∈

Ci |(X ′
i , Y

′
) = (λX̂i +(1−λ)Xi , λŶ +(1−λ)Y ) for all λ ∈ [0, 1]}. So all points

along the line between (X̂i , Ŷ ) and (Xi , Y ) have lower value than (̄Xi , Ȳ ). By
continuity of preferences there is a neighborhoodN of (Xi , Y ) such that
(X

′
i , Y

′
) ∈ N ∩ Ci implies that (X

′
i , Y

′
) �i (X̄i , Ȳ ). This corresponds to a

point in the closure ofN with smaller value than (̄Xi , Ȳ ). But N ∩ G /= φ.
This leads to a contradiction of 5.

7. Suppose [(̄Xi )n
i=1, Ȳ ] is not Pareto-optimal. Let [(Xi )n

i=1, Y ] be a Pareto-
superior feasible allocation. It follows from 5 and 6 that

∑
i Xi +

∑
i ti ·

Y >
∑

i X̄i +
∑

i ti · Ȳ . In particular, we can setzi = Y for all i . Then∑
i ti =

∑
i Pi = b. It follows that∑

i

Xi + b · Y >
∑

i

X̄i + b · Ȳ =
∑

i

ωx
i .

Therefore, [(Xi )n
i=1, Y ] is not feasible.

Q.E.D.

Proof of Theorem 2. (i) We first show that if ( ¯m, z̄ ) is a Nash equilibrium ofΓ γ,δ

for e ∈ E , then [(Pi (m̄, z̄ ), ωx
i − Ti (m̄, z̄ ))n

i=1, Y (m̄, z̄ )] is a Lindahl equilibrium
for e with Pi (m̄, z̄ ) as the Lindahl price of the public good for playeri . Since
Lemma 5 show that Nash equilibrium is Pareto-optimal, we only need to show
that Pareto optima are Lindahl equilibria. The following argument is similar to
that in Foley (1970) p.68. Let̄Xi ≡ ωx

i − Ti (m̄, z̄ ), andȲ ≡ Y (m̄, z̄ ). Define

F = {(X1, X2, · · · , Xn , Y1, Y2, · · · , Yn )|(Xi , Yi ) ∈ Ci , Yi

= Yj = Y for i /= j andY ≤
∑n

i=1(ω
x
i − Xi )

b
}.

It is easy to see thatF is a convex set and the point (X̄1, X̄2, · · · , X̄n , Ȳ1, Ȳ2, · · · , Ȳn )
is in the boundary ofF . Define

D = {(X1, X2, · · · , Xn , Y1, Y2, · · · , Yn )|(Xi , Yi ) ∈ Ci , (Xi , Yi ) �i (X̄i , Ȳ ), ∀i}.

D is convex via the same argument as Lemma 3, and the point (X̄1, X̄2, · · · ,
X̄n , Ȳ1, Ȳ2, · · · , Ȳn ) is in the boundary ofD . The intersection of the interior of
the two sets is empty,F◦ ∩ D◦ = φ, since if it was not ({X̄i }n

i=1, Ȳ ) would not
be a Pareto optimum, which contradicts Lemma 5. By the separating hyperplane
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theorem, there exists a price vector, (px
1 , · · · , px

n , py
1 , · · · , py

n ) /= 0 and a scalarc
such that for all (X1, X2, · · · , Xn , Y1, Y2, · · · , Yn ) ∈ D ,

n∑
i=1

px
i · Xi + (

n∑
i=1

py
i ) · Y ≥ c. (3)

Since (̄X1, X̄2, · · · , X̄n , Ȳ1, Ȳ2, · · · , Ȳn ) ∈ D ∩ F , we have

n∑
i=1

px
i · X̄i + (

n∑
i=1

py
i ) · Ȳ = c. (4)

By 5 of the proof of Lemma 5, the hyperplane going through (X̄i , Ȳ ) is defined
by the vector (1, ti ) for all i where

ti = Pi (m, z ) + (Y − zi ) + δ
∑
j/=i

(Y − zj ).

Therefore,px
i = 1 andpy

i = ti for all i . Under the assumption of Nash behavior,
we have

py
i = Pi (m̄, z̄ ) + (Ȳ − z̄i ) + δ

∑
j/=i

(Ȳ − z̄j ) = Pi (m̄, z̄ ), (by Lemma 1).

Next we want to show that (̄Xi , Ȳ ) maximizes the preference of playeri
subject to the budget constraint. Suppose (Xi , Yi ) �i (X̄i , Ȳ ) while Xj = X̄j and
Yj = Ȳ for all j /= i , then the point (X1, X2, · · · , Xn , Y1, Y2, · · · , Yn ) is in D . From
Eq. (3) and (4) we have

n∑
k=1

Xk + (
n∑

k=1

Pk (m̄, z̄ )) · Y ≥
n∑

k=1

X̄k + (
n∑

k=1

Pk (m̄, z̄ )) · Ȳ .

Since all terms are the same on both sides except those corresponding toi , it
follows thatXi + Pi (m̄, z̄ ) · Y ≥ X̄i + Pi (m̄, z̄ ) · Ȳ . By the same argument as in 6
of the proof of Lemma 5, equality cannot hold. Therefore, we have

Xi + Pi (m̄, z̄ ) · Y > X̄i + Pi (m̄, z̄ ) · Ȳ . (5)

SincePi (m̄, z̄ ) = Pi (m̄−i , z̄−i , mi , zi ), Eq. (5) implies

Xi + Pi (m̄−i , z̄−i , mi , zi ) · Y +
1
2

[Y − zi ]
2 +

δ

2

∑
j/=i

[Y − z̄j ]
2 > X̄i + Pi (m̄, z̄ ) · Ȳ .

By Lemma 1, this is equivalent toXi + Ti (m̄−i , z̄−i , mi , zi ) > X̄i + Ti (m̄, z̄ ).
Therefore, (Xi , Y ) �i (X̄i , Ȳ ) impliesXi +Ti (m̄−i , z̄−i , mi , zi ) > X̄i + T̄i (m̄, z̄ ),

i.e., [ωx
i − Ti (m̄, z̄ ), Y (m̄, z̄ )] maximizes the preference of playeri subject to the

budget constraint.
From Lemma 1, it follows that
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n∑
i=1

Ti (m̄, z̄ ) = b · Y (m̄, z̄ ).

Therefore, the allocation [(ωx
i − Ti (m̄, z̄ ))n

i=1, Y (m̄, z̄ )] is feasible. Hence,
[(Pi (m̄, z̄ ), ωx

i − Ti (m̄, z̄ ))n
i=1, Y (m̄, z̄ )] is a Lindahl equilibrium.

(ii) In the second part, we prove that if [(P̄i , X̄i )n
i=1, Ȳ ] is a Lindahl equilibrium

for e ∈ E , then there is a Nash equilibrium ( ¯m, z̄ ) of Γ γ,δ for e, such that
Y (m̄, z̄ ) = Ȳ , ωx

i − Ti (m̄, z̄ ) = X̄i , andP̄i (m̄, z̄ ) = P̄i .
Let [(P̄i , X̄i )n

i=1, Ȳ ] be a Lindahl equilibrium. Let ¯zi = Ȳ for all i and (m̄i )n
i=1

be the solution to the followingn linear equations:{
m̄1 + · · · + m̄n = Ȳ

−γ
∑

j/=i m̄j = P̄i − b
n − γ

n

∑
j/=i z̄j , for i = 1, ..., n − 1.

(6)

Note that the above system has a unique solution ( ¯mi )n
i=1. Since [(̄Pi , X̄i )n

i=1, Ȳ ]
is a Lindahl equilibrium,

[ωx
i − P̄i · Ȳ , Ȳ ] �i [ωx

i − P̄i · Y , Y ], for all Y .

ChooseY = mi +
∑

j/=i m̄j . Then for eachi ,

[ωx
i − P̄i · Ȳ , Ȳ ] �i [ωx

i − P̄i · (mi +
∑
j/=i

m̄j ), mi +
∑
j/=i

m̄j ], for all mi . (7)

Since preferences are strictly increasing in the private goodx , we have

[ωx
i −P̄i ·(mi +

∑
j/=i

m̄j ), mi +
∑
j/=i

m̄j ] �i [ωx
i −P̄i ·(mi +

∑
j/=i

m̄j )− 1
2

(zi −mi −
∑
j/=i

m̄j )
2

− δ

2

∑
j/=i

(z̄j − mi −
∑
j/=i

m̄j )
2, mi +

∑
j/=i

m̄j ], (8)

for all mi , zi . From Eq. (7) and (8), it follows that

[ωx
i − P̄i · Ȳ , Ȳ ] �i [ωx

i − P̄i · (mi +
∑
j/=i

m̄j ) − 1
2

(zi − mi −
∑
j/=i

m̄j )
2

− δ

2

∑
j/=i

(z̄j − mi −
∑
j/=i

m̄j )
2, mi +

∑
j/=i

m̄j ], (9)

for all mi , zi . From Eq. (6), for alli ,

Ȳ =
n∑

k=1

m̄k = Y (m̄, z̄ ),

P̄i =
b
n

− γ
∑
j/=i

m̄j +
γ

n

∑
j/=i

z̄j = Pi (m̄, z̄ ) = Pi (m̄−i , z̄−i , mi , zi ), (10)

Therefore, from Eq. (9) and (10), we have
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[ωx
i − Pi (m̄, z̄ ) · Y (m̄, z̄ ) − 1

2
(z̄i −

n∑
k=1

m̄k )2

−δ

2

∑
j/=i

(z̄j −
n∑

k=1

m̄k )2, Y (m̄, z̄ )] �i

[ωx
i − Pi (m̄−i , z̄−i , mi , zi ) · Y (m̄−i , z̄−i , mi , zi ) − 1

2
(zi − mi −

∑
j/=i

m̄j )
2

−δ

2

∑
j/=i

(z̄j − mi −
∑
j/=i

m̄j )
2, Y (m̄−i , z̄−i , mi , zi )]

for all mi , zi . Hence (m̄, z̄ ) is a Nash equilibrium ofΓ γ,δ, with Y (m̄, z̄ ) = Ȳ ,
ωx

i − Ti (m̄, z̄ ) = X̄i , andPi (m̄, z̄ ) = P̄i . Q.E.D.

Proof of Corollary 1. (i) We first show that if ( ¯m, z̄ ) is a Nash equilibrium ofΓ γ,δ

for e ∈ E Q , then [(Pi (m̄, z̄ ), ωx
i − Ti (m̄, z̄ ))n

i=1, Y (m̄, z̄ )] is a Lindahl equilibrium
for e with Pi (m̄, z̄ ) as the Lindahl price of the public good for playeri .

Maximizing the utility function, holding ¯m−i and z̄−i fixed,

max
mi ,zi

vi (Y ) + ωx
i − Ti (m̄−i , z̄−i , mi , zi ),

yields a first order condition

zi = mi +
∑
j/=i

m̄j . (11)

Using Eq. (11) and the Envelope Theorem we obtain the other first order condi-
tion,

Dvi (Y ) − Pi (m̄−i , z̄−i , mi , zi ) + δ
∑
j/=i

(z̄j − mi −
∑
k/=i

m̄k ) = 0. (12)

In Nash equilibrium,mi = m̄i andzi = z̄i , then Eq. (12) yields

Dvi (Ȳ ) = Pi (m̄, z̄ ). (13)

Feasibility is verified in the proof of Theorem 2. Therefore, [(Pi (m̄, z̄ ), ωx
i −

Ti (m̄, z̄ ))n
i=1, Y (m̄, z̄ )] is a Lindahl equilibrium fore ∈ E Q with Pi (m̄, z̄ ) as the

Lindahl price of the public good for playeri .
(ii) If [( P̄i , X̄i )n

i=1, Ȳ ] is a Lindahl equilibrium fore ∈ E Q , then there is a
Nash equilibrium ( ¯m, z̄ ) of Γ γ,δ for e, such thatY (m̄, z̄ ) = Ȳ , ωx

i −Ti (m̄, z̄ ) = X̄i ,
and P̄i (m̄, z̄ ) = P̄i . This part is identical to part (ii) of the proof of Theorem 2,
since it does not require Assumption 2. Q.E.D.

Proof of Corollary 2. Summing Eq. (13) overi yields∑
i

Dvi (Ȳ ) = b (14)
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Since, by Definition 2,D2vi (Y ) < 0 for all i , there can be at most one value of
Ȳ that satisfies Eq. (14). Let this value beY ∗ =

∑
i m∗

i .
Definition 2,Dvi (Y ) > 0 for all i , and Eq. (13) imply thatP∗

i is also unique.
By Lemma 1,z ∗

i =
∑

i m∗
i = Y ∗, thenz ∗

i is unique. Eq. (10) can be rearranged
as

m∗
i =

P∗
i

γ
+

Y ∗

n
− b

γn

which solves uniquely form∗
i . Q.E.D.
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