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Abstract

The use of package auctions for complex resource allocation has been rapidly in-

creasing in recent years. In this paper, we study two package auction mechanisms in

a laboratory setting, a sealed bid Vickrey auction and an ascending version of Vick-

rey, the iBEA auction. Unlike the single-unit Vickrey auction, where bidders tend to

overbid in the laboratory, most of our bidders either underbid or bid their true values.

Furthermore, at the aggregate level, while the iBEA auction generates significantly

higher bidder profit, the Vickrey auction generates significantly higher revenue than

does iBEA. While the two auctions achieve the same efficiency, a higher proportion of

iBEA auctions achieves 100% efficiency than does the Vickrey auction. We also find

that human bidders learn from their robot opponents when the robot strategies are

(myopic) best responses.

Keywords: combinatorial auctions, procurement auctions, experimental economics

JEL Classifications: C91, D44
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1 Introduction

In recent years, the use of various multi-object auction mechanisms to determine resource

allocation has been rapidly increasing. In particular, the Federal Communications Com-

mission (FCC) spectrum auctions, characterized by synergies across licenses, stimulated

tremendous research interests in complex auction design for multiple objects and with syn-

ergies. Since 1994, the FCC has used the Simultaneous Multiple Round (SMR) auction to

allocate spectrum licenses and raised over $41 billion in revenue (Milgrom 2004). However,

this auction format does not allow package bidding. Ledyard, Porter and Rangel (1997)

demonstrate that the performance of the FCC design degrades in the presence of comple-

mentarities. More generally, when bidder valuations for multiple objects are super-additive,

package bidding is necessary to increase efficiency, seller revenue and bidder willingness to

participate (Bykowsky, Cull and Ledyard 2000). Economic research on package auction

mechanisms helps policy makers such as the FCC as well as others who must allocate

complex resources. For example, based on experimental tests of various package auction

mechanisms by Brunner, Goeree, Holt and Ledyard (2006) and Goeree and Holt (2007), the

FCC has decided to use the hierarchical package bidding auction mechanism proposed by

Rothkopf, Pekec and Harstad (1998) for selling spectrum licenses in the 700 MHz band.1

The earliest research on package auction design is a proposal for a sealed bid com-

binatorial auction sale of paired airport takeoff and landing slots proposed by Rassenti,

Smith and Bulfin (1982). In another study, Banks, Ledyard and Porter (1989) present two

kinds of iterative package auctions to allocate uncertain and unresponsive resources, AUSM

(Adaptive User Selection Mechanism) and the iterative Vickrey-Clarke-Groves mechanism

(Vickrey (1961), Clarke (1971), Groves (1973)). In laboratory experiments, these package

auctions significantly outperform markets and administrative procedures. More recently,

Kwasnica, Ledyard, Porter and DeMartini (2005) create and test a new design for multi-

object iterative auctions by merging the better features of the AUSM and the FCC SMR

designs. The resulting new Resource Allocation Design (RAD) is shown to perform better

than either parent.

Another important application of package auction design is in a Business-to-Business
1See http://wireless.fcc.gov/auctions/default.htm?job=auction_summary&id=73 for more infor-

mation.
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(B2B) context, which is predominantly multi-object and often involves synergies. Package

auctions have the potential to provide value to both buyers and sellers of goods and ser-

vices. The descending Dutch auction used to sell flowers in Aalsmeer, Holland is a simple

version of a package auction for homogeneous goods (Katok and Roth 2004). More re-

cently, package auctions have been successfully applied to transportation procurement and

sourcing networks. For example, Sears Logistics Services is the first procurer of trucking

services to use a package auction to reduce its costs. Since 1993, it consistently saved 13

percent over past procurement practices, mostly through bilateral negotiations (Ledyard,

Olson, Porter, Swanson and Torma 2002). Similarly, Proctor & Gamble has successfully

used package auction in its sourcing of displays and truckload transportation services, with

estimated savings of 9.6 percent in its two and a half years of implementation (Sandholm,

Levine, Concordia, Martyn, Hughes, Jacobs and Begg 2006). Finally, the London bus routes

provide an example of the use of a package auction format in public procurement. In this

instance, the local transportation authority has adopted a form of package auction because

of expected economic synergies among routes located in the same area of London. The

London bus routes auction has led to increased quality of service and lower costs, and thus

is considered a success (Cantillon and Pesendorfer 2006).

Empirical investigations of package auctions have important implications not only in pro-

curement and privatization, but also potentially in the allocation of scarce equipment time

in large scientific collaboratories.2 The National Science Foundation and other federal agen-

cies are poised to make significant investments in expanding the ability of geographically-

distributed groups of scientists to conduct research via the Internet. There are currently

over eighty collaboratories in use within multiple scientific communities, including space

physics, HIV/AIDS, software engineering and neuroimaging (Finholt 2002). In many col-

laboratories, a critical feature of the equipment time allocation problem is that contiguous

time slots are more valuable than the sum of separate slots, i.e., user valuation for multiple

slots exhibits synergy. Therefore, package auctions might be an important mechanism in

achieving efficient allocation of equipment time (Takeuchi, Lin, Chen and Finholt 2008).

Despite successful results for package auctions, the theoretical properties of these auc-
2First proposed in the late eighties, a collaboratory is a center without walls, in which researchers can

perform their research without regard to physical location - interacting with colleagues, accessing instrumen-

tation, sharing data and computational resources, and accessing information in digital libraries (Wulf 1993).
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tions are not often understood. Therefore, it is unclear whether a given choice of design

option is the most appropriate one.

An important standard for nearly all mechanism design work, and for auctions in par-

ticular, is the Vickrey-Clarke-Groves (VCG) mechanism. The VCG mechanism is dominant

strategy incentive compatible, i.e., bidding one’s true valuation is always optimal regardless

of others’ strategies. Furthermore, it implements the efficient outcome. For the single object

case, VCG mechanism becomes the familiar second-price auction. In the auction context,

we follow convention and call the VCG mechanism Vickrey auctions.

However, despite its attractive theoretical properties, the Vickrey auction has some

disadvantages. In the package auction context, there are three main concerns.3 First, the

Vickrey auction might be vulnerable to collusion. For example, bidders have the incentive

to use shill bidders through which they could manipulate the allocation and prices in their

favor. Second, it might suffer from the monotonicity problem,4 i.e., adding bidders might

reduce equilibrium revenues. Third, previous laboratory experiments show that, in the

single object case, the dominant strategy in second-price auctions is not transparent. Many

experimental subjects consistently overbid in second-price auctions and do not seem to learn

from prior experience (Kagel 1995).

Contrary to the economist belief that Vickrey auctions are rarely used in practice,

Lucking-Reiley (2000b) presents evidence that Vickrey auctions have long been the pre-

dominant auction format for mail sales of collectible postage stamps, at least 65 years

earlier than the publication of Vickrey’s seminal paper. Vickrey-like auctions have also

been appearing in auctions on the Internet, sometimes with an additional feature of “proxy

bidding.” In these auctions, a bidder tells his proxy his maximum willingness to pay. The

proxy keeps this information secret and bids on the bidder’s behalf in an ascending auc-

tion in a pre-announced increment. If every bidder uses a proxy, then the bidder with the

highest maximum price wins and pays (approximately) the second highest price. The most

prominent examples of such auctions include Amazon and eBay.5

To retain the advantages of the sealed-bid Vickrey auctions while reducing their disad-
3Note the first two problems do not appear when all goods are substitutes for all bidders.
4See Milgrom (2004) Chapter 8 for examples.
5Ockenfels and Roth (2002) analyze the closing rules of eBay and Amazon. They show that eBay auctions,

with a hard closing rule, give bidders incentives for sniping, while Amazon auctions, with a soft closing rule,

do not give such incentives and hence are a more faithful dynamic version of Vickrey.
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vantages, researchers have searched for an ascending bid package auction with comparable

theoretical properties. A recent example is the iBundle Extend & Adjust (iBEA) auction

(Mishra and Parkes 2007), which is built on the iBundle auction of Parkes and Ungar (2000).

It is an ascending bid auction with package bidding which implements efficient allocation

and Vickrey payments in ex post Nash equilibrium, with only a free-disposal requirement

on agent preferences. The iBEA auction is the first ascending package Vickrey auction for

general valuations with a single price path.6 Thus, theoretically, iBEA represents a major

advance in modeling package auctions.

In this paper, we investigate two package auction mechanisms in the laboratory, Vickrey

and iBEA, to evaluate their performance among boundedly rational individuals. Our study

advances research on auctions in two ways. First, compared to previous experimental studies

of package auctions, the theoretical properties for these two auctions are well understood.

Second, this is the first experimental study of iBEA, a new promising ascending bid package

auction mechanism.

We study these two mechanisms in a simple environment where three bidders com-

pete for four items (and thus 15 packages), with synergies across subsets of the items. In

our human-robot treatments, each human bidder competes against two automated bid-

ders. In some treatments, the automated bidders are programmed to follow the dominant

strategy in Vickrey, and Myopic Best Response in iBEA, while in the other treatments,

automated bidders are programmed to follow random strategies. The use of automated

agents serve two purposes. First, it allows the experimenter to compare the performance

of the two mechanisms in an environment free from the strategic uncertainties inherent in

interactions between human bidders.7 Second, the use of automated agents is becoming

increasingly widespread in Internet auctions, which allow for conveniently asynchronous

bidding (Lucking-Reiley 2000a). Therefore, it is important to study how humans react

when they bid against automated agents. For robustness check, we implement two human-

human treatments, where human bidders compete against each other in the same economic

environment as in the human-robot treatments.

The main results of our two auction scenarios present some unexpected findings. Unlike
6The iBEA auction with a proxy behaves equivalently to the ascending proxy auction (Ausubel and

Milgrom 2002) when buyers are substitutes (Mishra and Parkes 2007).
7See, e.g., Kagel and Levin (2001) for an experiment with human bidders against automated agents in

multi-unit auctions of homogeneous goods.
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the single-unit Vickrey auction, where bidders tend to overbid in the laboratory, most of our

bidders either underbid or bid their true values. Furthermore, at the aggregate level, while

the iBEA auction generates significantly higher bidder profit, the Vickrey auction generates

significantly higher revenue. While the two auctions achieve the same efficiency, a higher

proportion of iBEA auctions achieves 100% efficiency than does the Vickrey auction. We

also find that human bidders learn from their robot opponents when the robot strategies

are (myopic) best responses.

The rest of the paper is organized as follows. Section 2 introduces the auction mech-

anisms. Section 3 presents the experimental design. Section 4 presents the hypotheses.

Section 5 presents the analysis and main results. Section 6 concludes.

2 The Auctions

In this section, we introduce our two auction mechanisms. To do so, we first set up a simple

framework that allows us to explain the auctions clearly.

In this framework, let N = {1, . . . , n} be a finite set of bidders. Let i denote an agent,

where i = 0 is an auctioneer and i > 0 is a bidder. N0 = N ∪{0} is the set of all bidders and

the auctioneer. Let K = {1, . . . , k} represent the set of objects to be sold, and X = {0, 1}k

represent the set of combinations of objects. Let Bi be a set of bids of bidder i. Each bid is

a pair, (x, p), where x ∈ X corresponds to the packages desired and p ∈ R is the bid price.

Let vi : X → R+ be bidder i’s valuation function that assigns a value to a package. Finally,

δ = (δ1, . . . , δb) is an indicator vector, where δj ∈ {0, 1} indicates whether bid (xj , pj) is

winning or losing, and where b is the total number of bids.

As the winner determination problem is part of every package auction design, we for-

mally define this problem for our experiment.

Definition (Package auction winner determination problem). The package auction winner

determination problem is to maximize the sum of all bids, indicating each bid as winning

or losing, under the constraint that each item can be sold to at most one bidder:

max
δ

b∑

j=1

δjpj subject to
∑

j∈{j:δj=1}
xj ≤ (1, 1, . . . , 1). (1)

One of the most important goals in multi-object auctions is for all bidders to bid truth-

fully. We now define a truthful bid: a bid (x, p) ∈ Bi is a truthful bid, if vi(x) = p. The
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allocation associated with the solution to the winner determination problem maximizes the

aggregate surplus, when every bidder bids for all packages and the bids are all truthful.

Although it is desirable that all bidders truthfully bid for all packages, in theory, de-

pending on the auction mechanism, it might not always be optimal for a bidder to bid her

true value, and in practice, it is not easy for bidders to calculate all values for all possible

packages. To design a good auction mechanism, we would like to obtain the most efficient

allocation among feasible outcomes. In the design of a multi-object auction mechanism,

there are three potential problems to overcome.

1. The exposure problem: When items are not substitutes and bidders cannot bid on

packages, bidders are usually exposed to the risk that they may overpay. For exam-

ple, suppose that there are two items and that bidder i’s valuations exhibit strong

complementarity, such that vi((1, 0)) = vi((0, 1)) = 1 < 3 = vi((1, 1)). He may bid on

each item at prices more than 1, expecting that he gets both of the items. However,

it is possible that he could get only one item while paying more than 1. Auctions

with package bidding, such as the two auctions in this study, should overcome this

problem.

2. The threshold problem: Suppose that there are four bidders and three items to trade

and that v1((1, 0, 0)) = v2((0, 1, 0)) = v3((0, 0, 1)) = 1.5 and v4((1, 1, 1)) = 4. In this

setting, it is efficient to allocate the items to Bidders 1, 2 and 3. However, suppose

that Bidders 1, 2 and 3 bid on their desirable item at price 1, respectively, and that

Bidder 4 bids on the package of all items at price 3.6. In this case, the winning bid is

Bidder 4’s bid, but none of Bidders 1-3 can overbid on Bidder 4’s bid. The ascending

bid auction, iBEA, overcomes the threshold problem, which we will explain in Section

2.2.

3. Computational problems: There are two computational problems in package auctions,

the auctioneer’s and the bidders’. For the auctioneer, the problem is to solve Eq. (1),

which is NP-complete (Rothkopf et al. 1998). For the bidders, they must evaluate all

possible combinations, which can be cognitively difficult. Evaluation of the latter is

where experimental research can be especially valuable.

In the following sections, we first introduce the Vickrey and iBEA auctions, and then

discuss their respective theoretical properties.
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2.1 Vickrey Auction with Package Bidding

A Vickrey auction with package bidding is an extension of the more familiar second-price

auction. At the beginning of each auction, each bidder selects the packages he would like to

bid on, and the amount he would like to bid for each package. Each bidder can choose to

bid on as many packages as he wants, and he can bid on a single object multiple times, by

bidding on several packages that contain that item. However, no matter how many packages

a bidder bids on, he will never win more than one package. This type of bidding is called an

exclusive-or (XOR) bid. Since all items are weakly complements in our experiment, XOR

is not necessary for incentive compatibility. However, to minimize the interface difference

between the two mechanisms, we impose XOR bids in the Vickrey auction, as they are

required in the iBEA auction.

Next, once all bidders have submitted their bids, the auctioneer will choose the combi-

nation of submitted bids that yields the highest sum of bids. The set of bidders winning a

package are the winning bidders.

After determining the winning bidders, the auctioneer then, one at a time, chooses each

winning bidder as a pivotal bidder. The auctioneer examines the bids again, but ignores

the bids of the pivotal bidder. The auctioneer determines the allocation of goods that

maximizes the sum of bids, using the same rules as before, but not considering any bids

placed by the pivotal bidder. Once this new allocation has been determined, the auctioneer

compares the sum of bids generated by this allocation with those generated when no bids

are excluded.

At the end of the auction, the amount that the winning bidders are required to pay

depends on the additional revenue that each bidder generated, which is calculated by com-

paring the original revenue obtained by the auctioneer versus the revenue obtained by the

auctioneer when the given bidder is pivotal. The following example from the experimental

instruction illustrates how this process works. The fictitious currency used in this example

(and throughout the experiment) is pounds (£).

Example: Suppose that there are three bidders and four objects to allocate,

and the following bids are submitted:
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Package Price Status

Bidder 1 AB £50 winning

Bidder 2 CD £40 winning

Bidder 3 ABCD £60

Bidder 3 AB £30

As shown in the table, the bids from Bidder 1 and 2 are the winning bids,

because they generate the highest revenue for the auctioneer £50 + £40 = £90.

However, the auctioneer does not ask Bidder 1 to pay £50. Suppose we

choose Bidder 1 as a pivotal bidder, and ignore his bids. The winning bids then

become Bidder 2’s bid on CD and Bidder 3’s bid on AB.

Package Price Status

Bidder 1 AB £50 winning

Bidder 2∗ CD £40 winning

Bidder 3 ABCD £60

Bidder 3∗ AB £30 winning

In this case, the auctioneer calculates the revenue that those winning bids would

generate, which is £40 + £30 = £70. Thus, the additional revenue that Bidder

1 generates is £20, since £90 – £70 = £20. This £20 is the price adjustment for

Bidder 1. Therefore, Bidder 1 pays £50 and receives £20 back. His final price

is £30.

The Vickrey auction is dominant strategy incentive compatible and implements an

efficient outcome. Each bidder ends up with a Vickrey payoff in equilibrium. However, it

has some shortcomings. First, it is vulnerable to collusion. Second, the revenue under a

Vickrey auction can be very low. Third, the dominant strategy in a Vickrey auction might

not be transparent when it is implemented with boundedly rational people. Many previous

experimental studies on single unit auctions (see Kagel (1995) for a survey) demonstrate

that bidders systematically overbid in single-unit Vickrey auctions. More recently, Isaac

and James (2000) show that, in an experimental setting with two items (and thus three

packages), Vickrey auctions with package bidding consistently generate higher efficiency

than those without package bidding. However, they do not compare a Vickrey package

auction with an ascending package auction.
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2.2 iBundle Extend & Adjust (iBEA) Auction

The iBundle Extend & Adjust (iBEA) auction is proposed by Mishra and Parkes (2007),

which builds on the iBundle auction described in Parkes and Ungar (2000). The former does

not retain several details in the latter, such as the ε-best response set and the ε last-and-

final bid, which are adopted in this experiment. The iBEA auction is an ascending-price

generalized Vickrey auction. It maintains non-linear and non-anonymous prices on packages,

and terminates with approximately efficient allocation and Vickrey payments. To achieve

these properties, the mechanism requires a myopic best response, which is an ex post Nash

equilibrium. In an iBEA auction, each auction takes place in several rounds. Let ε be

the price increment. The choice of ε involves a tradeoff between the speed of the auction

and the closeness to efficiency of the final outcome. That is, a smaller ε can achieve more

efficient outcomes, at the cost of a longer auction. An outline of the iBEA process is as

follows:

1. The auctioneer initializes prices for all packages.

2. At the beginning of each round, for each bidder, the auctioneer announces “ask prices”

pi(t) for all packages to bidder i.

3. Given the prices, each bidder can bid on as many packages as she wants, and can

bid on a single item multiple times, by bidding on several packages that contain that

item. Each bidder’s submitted bids, Bi(t), must satisfy the following rules:

(a) Winning bid resubmission rule: ∃(x, p) ∈ Bi(t), such that (x, p) is a winning

bid in the previous round. That is, if a bidder has made a winning bid in the

previous round, she is obligated to bid on that package, at the same price, in the

next round. Once a bid is losing, a bidder has no further commitment to bid on

that package, unless he chooses to do so.

(b) Last-and-final bid: The last-and-final option allows a bidder to continue to bid for

a package when the bid price is narrowly above the object’s value. Once a bidder

chooses the last-and-final option on a package, he receives a small discount, ε,

and the last-and-final bid is automatically resubmitted at the same price in every

round until the auction terminates. Therefore, even if the price for that package

increases, a bidder cannot increase his bid on that package.
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The last-and-final option facilitates the computation of Vickrey prices. It also

reveals to the auctioneer a bidder’s approximate true value for a package.

4. If there are no new bids, then the auction terminates. Otherwise, given {Bi(t)}i∈N ,

the auctioneer solves Eq. (1) and revises ask prices to each bidder in the following

manner:

(a) The ask prices for a bidder with any winning bid(s) remain the same as in the

previous round.

(b) The prices for packages with last-and-final bids remain the same as in the previous

round.

(c) The price for each package of a losing bid increases by ε.

(d) All ask prices are adjusted to be self-consistent, i.e., the price for a package

should not be less than the price for any of its subsets.

The auctioneer proceeds to the next round t + 1, then returns to step 2.

In the iBEA auction, there are two phases to determine the auction’s outcome. The

auctioneer uses Phase I to determine the final allocation and Phase II to compute the final

prices and Vickrey discounts. Phase I terminates when all agents who submit bids are

assigned a package, and the allocation is the final allocation. The auction then proceeds to

Phase II. In each round of Phase II, the auctioneer selects a pivotal bidder and ignores this

bidder’s bids to compute his externality. When she computes all externalities, the prices

are determined, from which she computes the Vickrey payoffs. Note that all adjustments

to Vickrey payoffs made in iBEA are with respect to ask prices and the marginal effect on

revenue to the auctioneer, as opposed to bidder values and the marginal effect on efficiency.

Just as Ausubel and Milgrom (2002) rely on the assumption of a straightforward bidding

strategy, in an iBEA auction, it is assumed that each bidder takes a Myopic Best-Response

(MBR). We say bidder i takes a myopic best-response to the ask prices pi(t) announced by

the auctioneer, if

Bi(t) =
{

(x, p)
∣∣∣vi(x, p)− p ≥ max

{
max
z∈X

{vi(z, p(z))− p(z)} , 0
}
− ε and p = p(x)

}
. (2)

where p(x) is the ask price of package x for bidder i. The MBR strategy chooses ε-maximized

packages, i.e., packages arbitrarily close to the best package.
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We now explain MBR in more detail. We define a bidder’s temporary profit as vi(x, p(x))−
p(x). Therefore, when a bidder examines his menu, he first looks for any packages on which

he has a negative temporary profit. For those packages that have a negative profit, he adds

ε to his temporary profit, because he knows that he can buy the package with an ε discount

using the last-and-final option. He does not change his temporary profit for a package on

which he currently has a positive profit. He then examines the revised temporary profits

for all packages, and finds the package that gives him the greatest revised temporary profit.

There are two possibilities:

1) If his greatest possible profit is greater than or equal to ε, he will bid on all packages

that give him a revised temporary profit within ε of the maximum temporary profit.

For example, if one package gives him a temporary profit of £17, no package gives

him a profit of more than £17, and ε = £5, then he will bid on all packages that give

him a temporary profit of at least £17 – £5, or £12.

2) If his greatest possible profit is less than ε, he will bid only on those packages that

have a revised temporary profit greater than or equal to 0.

Under the assumption of a MBR, we can achieve competitive equilibrium prices and

efficiency. More precisely, if bidders follow the MBR, then the vector of ask prices {pi(t)}i∈N

is a competitive equilibrium price vector after the end of Phase I. As ε → 0, the final

allocation becomes arbitrarily close to the efficient allocation. Furthermore, Phase II allows

the auctioneer to compute Vickrey payoffs. Parkes and Ungar (2000) prove that the MBR

is incentive compatible: MBR is an ex post Nash equilibrium of iBEA, as ε → 0.

To illustrate how the iBEA auction works, we use a simple three-bidder, two-item ex-

ample. In this example, we assume that all bidders follow a MBR strategy. Furthermore,

we set ε = 5, as in our experimental setting.

[Table 1 about here.]

Table 1 illustrates how iBEA works. The top panel presents Phases I and II round-by-

round and the bottom panel compares the results with those of the Vickrey auction.

As shown in Table 1, for Bidder 1, the values of A, B and AB are (10, 0, 10). For

Bidders 2 and 3, they are (0, 30, 30) and (4, 14, 22), respectively.

In round 1, the offered prices are the same. The auctioneer breaks the tie by randomly

choosing as many winning bidders as possible, and Bidders 1 and 2 are selected. Since
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Bidder 3 does not win any package, the auctioneer raises the offered prices for Bidder 3.

Specifically, the price for the losing bid on AB is raised by an increment of 5.

In Round 2, the highest temporary profit of Bidder 3 is 17 = 22−5. Bidder 3, following

the MBR, is willing to bid on any package whose temporary profit is above 12 = 17 − 5.

Bidder 3 bids on (AB, 5) and (B, 0), since the temporary profit of each package is 17 and

14, respectively. The auctioneer chooses (AB, 5) from Bidder 3 as the winning bid for

Round 2. The process continues.

Notice, however, that Bidder 3 makes last-and-final bids on (A, 5) and (B, 15) in Round

8, because the offered prices are above the value of those packages. These bids are submitted

with a discount of 5 and become (A, 0) and (B,10), respectively. At the end of Round 9,

there is no new bid. Consequently the allocation of items is finalized: Bidder 1 receives A

and Bidder 2 receives B.

The auction proceeds to Phase II. In this phase, the auctioneer randomly chooses one

of the winners as a pivotal bidder. Let us select Bidder 2 in this example. The auctioneer

excludes Bidder 2’s bids from the bids submitted in Round 9 and selects a new set of wining

bids. The new winning bid is (AB, 20) from Bidder 3. So, the auctioneer raises the offered

prices for Bidder 1 and proceeds to Round 10. In Round 10, (A,10) from Bidder 1 and

(B, 10) from Bidder 3 are selected as the winning bids, and there is no new bid. Choosing

Bidder 1 as the next pivotal bidder, the auctioneer goes through the same process. At the

end of Round 11, since there is no new bid and no winner for the next pivotal bidder, the

auction terminates.

Once the auction has ended, the auctioneer determines the price adjustment (rebate)

for Bidders 1 and 2. Note that the revenue is 30 before any price adjustment. Based on the

offered prices at the end of the auction, the auctioneer calculates the additional revenue that

each winner generates. When Bidder 1 is pivotal, Bidder 2 receives B and Bidder 3 receives

A and the revenue is 20. Thus, the additional revenue from Bidder 1 is 10 = 30−20, which

is the price adjustment for Bidder 1. Similarly, the price adjustment for Bidder 2 is 10. All

payoff information is summarized in the bottom panel of Table 1. In this example, compared

to the outcomes of the Vickrey auction, iBEA generates higher bidder profit (πA = 10 and

πB = 20) and less auctioneer revenue (10). This is due to the coarser grid size, ε = 5. In

this example, if we let ε = 1, the outcome of iBEA is identical to that of Vickrey.
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Although iBEA has more desirable properties than any other ascending package auc-

tions, it has not been tested in a laboratory setting. Past experiments on single-unit auc-

tions show that the ascending bid auction, e.g, English clock auction, achieves higher ef-

ficiency than the sealed bid Vickrey auction, even though the solution concept is weaker

(Kagel 1995). The ascending auction provides more feedbacks, which makes the optimal

strategy more transparent than its sealed bid counterpart. Therefore, it is interesting to see

whether this superior performance of the ascending bid auction carries over to a multi-object

package bidding context.

3 Experimental Design

Our experimental design reflects both theoretical and technical considerations. Specifically,

we are interested in three important questions. First, how do the Vickrey and iBEA auc-

tions compare in performance? Second, how do human subjects respond to the degree of

rationality in the environment? Third, do human subjects imitate bidding strategies of

their robot opponents in the auction settings? We describe our experimental environment

and procedures below.

3.1 The Economic Environment

In each auction, three bidders compete for four items (A, B, C and D), and thus 15

packages.8 In twelve out of sixteen experimental sessions, each human subject competes

against two automated bidders, i.e., computer programs (or “robots”). In each session,

subjects are informed that they interact with robots. Using robots gives us more control over

each human subject’s environment. For the human participants, this environment reduces

the strategic uncertainties inherent in interactions between human bidders. Furthermore, it

allows us to observe human subject reactions when they interact with robots. The latter, in

itself, has important implications for e-commerce (Eisenberg 2000). In each of the remaining

four sessions, five groups of three human bidders compete against each other with a random

rematching protocol.

We implement a 2×3×2 design for the human-robot treatments. In the first dimension,

we compare the two mechanisms, the Vickrey and iBEA auctions. In the second dimension,
8These packages are A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, and ABCD.

15



we implement three combinations of robot bidding strategies. As Sincere bidding (S) leads

to efficient allocation in both mechanisms, while Random bidding (R) represents zero-

intelligence, we set up three different combinations of these strategies, SS, SR and RR. In SS,

both robots follow Sincere bidding; in SR, one follows Sincere and the other follows Random

bidding; and in RR, both follow Random bidding. As we are interested in whether a subject

will imitate a certain strategy when told one of the robots follows such a strategy, we design a

third dimension with two information conditions. In the low information treatment, subjects

are told that they are competing against robots; however, the robot bidding strategies are

not explained to the subjects. In the high information condition, we explain the robot

strategies in the instructions.9

In addition to the human-robot treatments, we implement two human-human treat-

ments, one for each auction mechanism, where human participants compete against each

other.

We now describe bidder preferences in our experimental setting. Let Vi be the value

of package i. The value for each item is drawn independently from a uniform distribution

on {0, 1, 2, · · · , 10}. The value of a package is the sum of the values of the items in the

package plus the bonus value for certain combinations of items due to synergy. In the

human-robot treatments, a human bidder and the first robot derive synergy from A and B.

In the experiment, we choose a CES function to represent this preference. Thus, the value

of A and B together equals VAB = (V ρ
A +V ρ

B)1/ρ. The CES function allows us to control for

the degrees of complementarity and substitutability. When ρ > 1, VAB < VA + VB. When

ρ = 1, VAB = VA+VB. When 0 < ρ < 1, VAB > VA+VB, i.e., A and B have synergy. In the

experiment, we choose ρ = 0.9, as we are interested in the case when synergy is present.10

Similarly, the second robot derives synergy from C and D. For example, if a human bidder

or Robot 1 has package ABCD, the value equals VABCD = VAB +VC +VD. If Robot 2 has

the same package, the value equals VABCD = VA + VB + VCD. Since the human bidder and

Robot 1 have the same preference, the environment is more competitive for each than it is

for Robot 2. The same preference profile is used in the human-human treatments.

In the iBEA auction, we set ε = £5, since the smallest grid size is £1, and ε = £5

generates a reasonable speed of convergence in the lab. In Section 5, we use simulations to
9The instructions are quite lengthy; they are available at http://www.si.umich.edu/̃ yanchen/

10However, as one of our referees point out, the synergies are quite small.
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compare the performance of the two mechanisms using the actual grid size of ε = £1 for

Vickrey and ε = £5 for iBEA, as well as the same grid size of ε = £5 for both auctions.

3.2 Experimental Procedures

Our experiment involves 10 human subjects per session for the human-robot treatments,

and 15 subjects per session for the human-human treatments. Subjects are randomly as-

signed to a PC terminal. At the beginning of each session, each subject is given printed

instructions. After the instructions are read aloud, subjects are encouraged to ask questions.

The instruction period takes, on average, 23 minutes for iBEA and 15 minutes for Vickrey.

After receiving the instructions, subjects take a quiz designed to test their understanding

of the mechanisms. At the end of the quiz, the experimenters go through the answers with

the subjects. The quiz takes an average of 18 minutes for iBEA and 11 minutes for Vickrey.

At the end of the quiz, subjects start the experiment.

In each session, each subject participates in 10 auctions, except for the two human-

human iBEA sessions, where the subjects participate in three and five auctions respec-

tively.11 As we are interested in the effects of learning on bidding behavior, there are no

practice auctions. At the beginning of each auction, the value for each item is randomly

drawn from a uniform distribution on {0, 1, 2, · · · , 10} for each bidder.

In the Vickrey treatments, each subject is informed of the value of the 15 packages on

his screen. He can enter an integer bid for any of the 15 packages.12 Note that a zero bid on

a package is treated differently from no bid. A subject can be allocated a package on which

he bids zero, but can never be allocated a package that he does not bid on. Meanwhile,

each robot submits a bid on each package, following the pre-assigned strategy. A robot

following the Sincere strategy bids its true value for each package, while a robot following

the Random strategy randomly chooses a number between 0 and 120% of its value for each

package. The upper bound is chosen based on previous experimental evidence on bidding

range in single-unit Vickrey auctions (Kagel 1995). The server collects all bids from each

group, computes the final allocation and payoff for each bidder and sends this information

back to the bidder’s screen. Each human bidder gets the following information at the end
11It took 2.5 hours to finish each of the two human-human iBEA sessions, which was close to the upper

limit we could run without causing significant fatigue among our subjects.
12The zTree program sets a lower bound of zero and an upper bound of 1000 for the bids.
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of each auction: his allocation, his price and price adjustment, his value for the allocated

package, his profit for this auction and his cumulative profit.

In the iBEA treatments, each subject is given a menu, which contains the following

columns: the package, his value for each package, his price, his temporary profit, two check

boxes (whether he wants to bid on a package, and whether he wants his bid to be the

last-and-final bid) and the status of his previous bid (winning, losing, last-and-final and

winning, and last-and-final and losing). The bidder may check either, both or neither of

the two checkboxes. Recall that for winning bids and last-and-final bids, the checkboxes

are automatically checked. During the Phase I vs. Phase II transition, the subjects see

the same menu, i.e., feedback does not change in any noticeable way, and subjects are not

notified when the auction moves to Phase II.

In the iBEA auction, a robot following the Sincere strategy adopts the MBR. A robot

following the Random strategy randomly chooses a number between 0 and 120% of its value

for each package, and play MBR with respect to the random valuation. Robots choose the

last-and-final option for any package they place bids on that have an original negative

temporary profit.

Then the auction proceeds, as described in Section 2.

[Table 2 about here.]

Table 2 presents the relevant features of the experimental sessions, including mech-

anisms, robot strategy profiles, information conditions, the shorthand notation for each

treatment, the number of subjects for each treatment and the exchange rates.13 Overall,

16 independent computerized sessions were conducted in the RCGD lab at the University

of Michigan from July to November 2003, and from April to June 2007. We used zTree

(Fischbacher 2007) to program our experiments. Our subjects were students from the Uni-

versity of Michigan.14 No subject was used in more than one session, yielding a total of

180 subjects across all treatments. Each iBEA human-robot session lasted approximately

two hours, each iBEA human-human session 2.5 hours, while each Vickrey session lasted

approximately one hour. In addition to their auction earnings, subjects could win or lose
13At the end of iSS` and iSSh, the actual earnings of subjects were low; therefore, we adjust the exchange

rate to $1 equal £1. Since these adjustments happened at the end of the experiment, and no subject was

used for more than one session, we do not expect them to affect the experimental results.
14Doctoral students in Economics are excluded from participation.
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money based on their quiz answers. A subject with fully correct answers gets $5. Each

mistake in the quiz costs 50 cents. The average earning (including quiz award) was $33.1

for the Vickrey auction and $41.6 for the iBEA auction. Data are available from the authors

upon request.

4 Hypotheses

Based on the theoretical predictions and our experimental design, we identify the following

hypotheses.

Hypothesis 1. In Vickrey auctions, bidders will bid on all packages.

Hypothesis 2. In Vickrey auctions, bidders will bid truthfully.

Hypotheses 1 and 2 are based on the dominant strategy of the Vickrey auction. The next

two hypotheses are based on the theoretical predictions and our simulation results of the

iBEA auction.

Hypothesis 3. In iBEA auctions, bidders will bid on all packages within the MBR-threshold15

of the maximum temporary profit and only bid on these packages.

Hypothesis 4. In iBEA auctions, bidders will choose the last-and-final option for all pack-

ages with negative temporary profits.

We now formulate hypotheses which compare the performance of the two mechanisms. As

iBEA is an ascending version of Vickrey, we expect, ex ante, that the two mechanisms will

generate the same bidder profit, auctioneer revenue and efficiency.

Hypothesis 5. Vickrey and iBEA will generate the same amount of bidder profit.

Hypothesis 6. Vickrey and iBEA will generate the same amount of auctioneer revenue.

Hypothesis 7. Vickrey and iBEA will generate the same efficiency.

Furthermore, as the mechanisms are quite complex, we expect the human bidder to

learn from robot strategies in the high information treatments.
15The MBR-threshold is defined and computed based on simulation results in Section 5.
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5 Results

In this section, we first examine individual bidder behavior in Vickrey and iBEA auctions.

We then compare the aggregate performance of the two auctions.

5.1 Individual Behavior in Vickrey Auctions

Our Vickrey auction experiment consists of 90 subjects. Each subject independently plays

10 auctions with two robots in one of the six human-robot treatments. In the human-human

treatment, in each session, 15 subjects are randomly rematched into groups of three and

compete within their group in each of the ten auctions. In each auction, a subject can bid

on any of the 15 packages at any price between £0 and £1000.

Unlike the single item case, the strategy in a multi-item Vickrey auction with package

bidding has two dimensions. The first dimension is whether to bid on a package. The

second is how much to bid on a package if one decides to bid on it. A bidder’s strategy on

either dimension affects his profit, as illustrated in Figure 1.

[Figure 1 about here.]

Figure 1 presents simulated profits for the human bidder under the three different

human-robot environments in the Vickrey auction. The top panel (a) presents results

for the environment with two sincere robots. The middle panel (b) presents results for the

environment with one sincere and one random robot. The bottom panel (c) presents results

for the environment with two random robots. The horizontal plane consists of the two

strategy dimensions, the probability of bidding on a package, and the bid/value ratio for a

package. In the simulation, we generate 20,000 hypothetical auctions, each of which consists

of independent draws of the values for items A, B, C and D from the uniform distribution

on {0, 1, 2, · · · , 10}. In our hypothetical auctions, the preferences for the human and robot

bidders, as well as the auction rules, are identical to the experimental environment. For

each combination of the Probability of Bidding (drawn from the interval [0, 1] with a grid

size of 0.05) and Bid/Value Ratio (drawn from the interval [0, 2] with a grid size of 0.1), we

compute the average profit for the human bidder across these 20,000 auctions, and report it

on the vertical axis. Comparing the profit from each strategy combination across environ-

ments, we find that, Sincere-Sincere is the most competitive environment, with the lowest

20



profit level for the human bidder occurring at any given combination of the probability of

bidding and the bid/value ratio. The Sincere-Random environment is the next most com-

petitive, followed by the Random-Random environment. In each environment, the highest

profit is achieved when the probability of bidding is 1, and the bid/value ratio is also 1,

i.e., bidding on every package and bidding one’s true value for each package, which is the

dominant strategy.

[Table 3 about here.]

Table 3 presents results for the human bidders’ bidding decisions, averaged across all

treatments. The Active Bids column presents the ratio of positive and zero bids over 900,

which is the total number of bids if every bidder bids on every package. Note a zero bid is

an active bid, while no bid is inactive. The Bid/Value Ratio is the mean ratio of the bid to

the value of a package. The next three columns present the proportion of Truthful Bidding,

Overbidding and Underbidding among active bids, respectively.

Even though bidding on every package is a weakly dominant strategy, the results in the

second column of Table 3 show that the proportion of bids never reaches 100% on any pack-

age. Furthermore, participants bid on packages containing items AB more frequently than

they do on other packages. We now investigate which factors induce a higher proportion of

active bids.

[Table 4 about here.]

Table 4 presents results from the four probit models with robust clustering at the indi-

vidual level. The dependent variable is Active Bids, a dummy variable, which equals one if

a bidder places an active bid on a package and zero otherwise. While specifications (1) and

(2) examine factors affecting the likelihood of active bids in the human-robot treatments,

specifications (3) and (4) include the two sessions of human-human data. The independent

variables include Value of a package, a dummy variable Dsynergy, which equals one if a pack-

age contains both of the items that have the synergy,16 and zero otherwise, and a dummy

variable DHS, which equals one if the information condition is High and there is at least

one sincere robot bidder, and zero otherwise. The reason for including the latter is that
16In the human-human treatments, for Bidder 3, C and D have the synergy. For Bidders 1 and 2, these

items are A and B.
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participants might learn from the sincere robot strategy. Even though we are explicit in the

instructions for all High Information treatments that robots bid on all packages, participants

might ignore both parts of the random robot strategy, as the second part is obviously not

optimal. Indeed, replacing the last dummy with a dummy DH , which equals one with High

Information and zero otherwise, results in an insignificant coefficient. Lastly, the dummy

variable Dhuman equals one for the human-human treatment, and zero otherwise.

Result 1 (Whether to Bid on a Package). Bidders are significantly more likely to bid on

packages with higher values. In addition, they are more likely to bid on packages with syn-

ergistic items. Within the human-robot treatments, the proportion of active bids increases

significantly in treatments with at least one sincere robots and high information.

Support. In Table 4, the coefficients are probability derivatives. In specification (4), in-

creasing Value by 1 increases the likelihood of bidding on this package by 0.7%. If a package

contains the synergistic bundle, the likelihood that a subject bids on this package is increased

by 7.7%. In specification (1), compared to other information conditions, subjects increase

the likelihood of bidding on packages by 16.4% with at least one sincere robot and high

information. All coefficients are significant at the one- or five-percent level.

Result 1 indicates that bidders are significantly more likely to bid on high value packages

and those with synergistic bundles. Furthermore, bidders imitate the Sincere Robot, but

not the Random Robot. The coefficient for the dummy variable for the human-human

treatment, Dhuman, is positive and weakly significant (at the 10% level), indicating that

bidders are 10.7% more likely to place an active bid when competing against other humans

than when competing against robots.

We now explore the second dimension of bidding strategy, how much to bid on a package.

To investigate how much participants bid on a package in a Vickrey auction, we use a

structural approach based on Hypothesis 2, which proposes that bidding one’s true valuation

is a weakly dominant strategy. To test this hypothesis, we use an OLS regression with

clustering at the individual level. In the first specification, we use Bid as the dependent

variable, and Value as the only independent variable. We do not include a constant because

of the theoretical prediction. In the second specification, we add Auction, Cumulative Profit,

Dsynergy and DHS as independent variables. The variable Auction denotes the number of

auctions in a session. Thus, this variable captures any learning effect. For each specification,
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we run two-sided Wald tests of the null hypothesis of bids being equal to values against the

alternative hypothesis of bids not being equal to values. The results are presented in Table

5.

[Table 5 about here.]

The results in Table 5 indicate that, on average, bidders tend to underbid, rather than

overbid, in Vickrey auctions. In specification (1), the coefficient for Value is 0.919, signifi-

cantly less than one (p < 0.01, one-sided Wald test). In a similar regression conducted by

Isaac and James (2000), the coefficient for Value is 0.95 and not statistically different from

one.17 To classify bidders, we repeat the first specification in Table 5 for each bidder. We

then perform the Wald test for the null hypothesis that the coefficient on Value is 1 and

subsequently classify bidders into the following groups.

1. Underbidder: If we can reject the hypothesis of truthful bidding at the 5% level and

the coefficient is below 1.

2. Truthful Bidder: If we cannot reject the hypothesis of truthful bidding at the 5%

level.

3. Overbidder: If we can reject the hypothesis at the 5% level and the coefficient is above

1.

We now summarize the analysis of bidding behavior in Vickrey in the following result.

Result 2 (Bid Price in Vickrey). Bidders in a Vickrey auction, on average, bid 91.9% of

their true value. The coefficient of Value is significantly less than unity. Of our participants,

73% can be classified as underbidders, 6.7% as truthful bidders and 20.0% as overbidders.

Support. Table 5 presents the OLS regression results for our Vickrey auctions. The co-

efficient estimates show the amount subjects bid compared to their valuations. Robust

standard errors in parentheses are clustered at the individual level. A one-sided Wald test

of the null hypothesis of bid being equal to value yields p-value less than 0.01. The classifica-

tion of bidders comes from regressions at the individual level. The average R2 of individual

regressions is 0.939, with a standard deviation of 0.125.
17Isaac and James (2000) also include a constant, which is estimated to be −0.19 and not statistically

different from zero.

23



By Result 2, we reject Hypothesis 2. Most previous laboratory studies of single-unit

Vickrey auctions find that bidders tend to overbid in such environments (Kagel 1995). In

multi-unit uniform price auctions, bidders tend to overbid on the first unit and underbid

on the second unit, which is consistent with the theoretical prediction of demand reduction

(Kagel and Levin 2001). Our finding that most bidders either underbid or bid their true

value in Vickrey auctions is in stark contrast with previous experimental results. Our study

presents empirical evidence that the “robust” finding of overbidding in single-unit Vickrey

auctions does not carry over to package Vickrey auctions.

In addition to studying overall bidding behavior, we examine how learning may impact

bidding behavior. To do so, we first define bidding pattern as a combination of two different

measures, the Number of Active Bids18 in an auction and the Bid/Value Ratio. To identify

the effects of prior experience while minimizing individual-specific characteristics on bidding

behavior, we use the difference-in-difference analysis. First, for each auction, we take the

difference of the Number of Active Bids between the current and the previous auctions.

We then classify all observations into two groups, a winner group where subject(s) won a

package in the previous auction, and a loser group, where they did not. Finally, we compare

the difference between the two groups. We analyze the Bid/Value Ratio in a similar way.

Result 3 (Effect of Prior Experience on Bidding). Losers in a previous auction are signifi-

cantly more likely to change their number of active bids, compared to winners. Furthermore,

losers increase their bid/value ratio, while winners decrease their bid/value ratio. The dif-

ference is significant at the one-percent level.

Support. A loser in a previous auction changes his number of active bids by 1.95, on

average (with a standard error of 0.176), while a winner in the previous auction changes

his number of active bids by only 1.19 (with a standard error of 0.097). The difference is

statistically significant at the level of 1%. The robust standard error clustered by subject

is 0.242 that yields a p-value of 0.002. Furthermore, a loser in a previous auction increases

his bid/value ratio by 0.129 on average (with a standard error of 0.034), while a winner

in the previous auction decreases his bid/value ratio by 0.064 (with a standard error of

0.093). The difference is statistically significant at the 1% level. The robust standard error

clustered at the individual level is 0.052 which yields a p-value less than 0.001.
18This is equivalent to the likelihood of bidding when the total number of packages is fixed.
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Result 3 indicates that participants in our study learn from prior experience. The direc-

tions of change for winners and losers are intuitive, yet indicate that the dominant strategy

is not transparent to a substantial number of participants, who adjust their behavior by

trial and error.

To understand the individual learning dynamics in our Vickrey auctions, we also inves-

tigate individual learning through two learning models, the reinforcement learning model

(Erev and Roth 1998) and the payoff assessment learning model (Sarin and Vahid 1999).

Both models have been shown to track human learning behavior fairly well in a variety of

games, such as relatively simple games (Erev and Roth 1998), games with complete infor-

mation (Chen and Gazzale 2004) and of limited information (Chen and Khoroshilov 2003).

However, we find that neither tracks learning dynamics well in the more complex Vickrey

auctions.

Overall, the most surprising finding in our Vickrey auctions is that most bidders either

underbid or bid their true value. Even though the dominant strategy is not transparent,

our subjects tend to adjust their behavior by trial and error. These findings in individual

behavior will translate into interesting aggregate performance measures, which we analyze

in Section 5.3.

5.2 Individual Behavior in iBEA

Our iBEA experiment consists of 90 subjects. In the human-robot treatments, each subject

independently plays 10 auctions with two robots. In the human-human treatments, in each

session, 15 subjects are randomly rematched into groups of three at the beginning of each

auction. As the iBEA auctions with a random rematching protocol take much longer to

complete, the number of auctions is three and five, respectively.

To analyze our iBEA auction results, we define adjusted temporary profit as the tempo-

rary profit of a package after a subject considers whether to check the last-and-final option.

For packages with the last-and-final option checked, the temporary profit is increased by £5.

The myopic best response (MBR) strategy in an iBEA auction states that bidders should

bid on packages within ε of the maximum adjusted temporary profit. Among packages a

participant can actively bid on,19 we group packages by their adjusted temporary profits in
19Recall that last-and-final packages and winning packages from previous rounds are automatically checked

in the current round; therefore, a participant cannot act on them. Consequently, we do not consider them
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each round of the auction.

At each round, a package is called a MBR package if its adjusted temporary profit is

within the MBR-threshold of the maximum adjusted temporary profit, where the MBR-

threshold is computed such that bidding on all packages within this threshold maximizes

the bidder’s expected profit.

Recall that Sincere robot’s threshold is set to £5. Given the robot strategies, the

threshold for human bidders are computed through simulation presented in Figure 2.

[Figure 2 about here.]

Figure 2 presents simulated profits for the human bidder in the three human-robot

treatments (iSS, iSR and iRR) in the iBEA auction. The horizontal plane consists of the

two strategy dimensions. The first, MBR threshold, determines which packages are MBR

packages for the human bidder, and the second is the probability of bidding on those MBR

packages. For each combination of the MBR threshold (drawn from the interval [1, 15] with

a grid size of 1) and the Probability of Bidding (drawn from the interval [0, 1] with a grid size

of 0.05), we generate 20,000 hypothetical auctions, each of which consists of independent

draws of the values. Then we compute the average profit for the human bidder across those

20,000 auctions and report it on the vertical axis. As indicated in the figure, the MBR

threshold is 6 for the iSS and iRR treatments, and 7 for the iSR treatment.

[Figure 3 about here.]

Figure 3 presents the proportion of human bidders that bid on MBR and non-MBR

packages among all packages a participant can actively bid on, in each of the six different

treatments. Comparing the low and high information treatments within SS, SR and RR,

the proportion of MBR bids to non-MBR bids substantially increases in SS. This increase is

consistent with the hypothesis that humans learn from robot strategies. We now use probit

models to formally check our impression from Figure 3.

[Table 6 about here.]

Table 6 presents seven probit specifications which examine factors affecting the likelihood

of bidding on a package. In all specifications, the dependent variable is PlaceBid, a dummy

as part of the choice set for the subject.
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variable which equals one if a bid is placed on a package and zero otherwise. The independent

variables are Temporary Profit, Dsynergy, DH and MBR in specifications (1), (3) and (5). In

specifications (2), (4) and (6), we add an independent variable, DH×MBR, which equals one

if the information condition is high and the package belongs to the set of MBR packages,

and zero otherwise. This variable controls for the information condition on MBR package

bidding. In specification (7), we only include two independent variables, Temporary Profit

and Dsynergy. We summarize the analysis below.

Result 4 (Bidding Decision in iBEA). In our iBEA auctions, we find that bidders are

significantly more likely to bid on packages with a higher temporary profit. We also find

that additional information on robot strategies induces significantly more bids on MBR

packages under SS.

Support. In Table 6, the coefficients on Temporary Profit are positive and significant in

all seven specifications. The coefficients on DH are not significant in any specifications. The

coefficient of DH×MBR is positive and significant in (2).

Result 4 confirms our intuition from Figure 3 that knowledge of robot strategies sig-

nificantly impacts human bidding behavior. In particular, the Sincere Robot induces more

MBR bids. This suggests that, in a complex auction, participants might not be able to

figure out the optimal bidding strategy, and thus are susceptible to learning. Therefore,

in the actual implementation of an iBEA auction, teaching bidding strategies may make

bidding more effective.

We now explore specifically whether subjects learn the robot strategy regarding the

last-and-final option. In all iBEA human-robot treatments, all robots follow the equilibrium

strategy in checking the last-and-final option, i.e., they check this option for a package whose

temporary profit is negative. In our high information treatments, subjects are explicitly told

when robots check the last-and-final option. We are interested in two questions. First, do

subjects learn to use this option? Second, when they use this option, do they use it at the

right time?

[Table 7 about here.]

Table 7 presents summary statistics on the mean temporary profit of all last-and-final

bids in a treatment, the number of such bids where the temporary profits are negative, or
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non-negative, the total number of last-and-final bids and the proportion of negative last-

and-final bids. The average temporary profit is £2.43 for all treatments, £2.13 for high

information treatments and £2.73 for low information treatments. The difference between

the high and low information treatments is not significant. This indicates that subjects

tend to check this option earlier than would be optimal.

[Table 8 about here.]

Table 8 presents OLS regression results. The dependent variable is Temporary Profit of

Last-and-Final Bids, while the independent variables include Round, and a dummy variable

for high information, DH . The coefficients of Round is negative and significant in all three

specifications, indicating that participants learn to check the last-and-final option with less

temporary profits over time.

Overall, in our iBEA auctions, consistent with the MBR strategy, bidders are more

likely to bid on packages with higher temporary profits, however, they check the last-and-

final option earlier than would be optimal. Furthermore, bidders seem to imitate bidding

strategies from the Sincere robots, and not the Random robots.

5.3 Aggregate Performance of the Two Mechanisms

We now examine the aggregate performance of the two mechanisms in three aspects: bidder

profit, auctioneer revenue and efficiency.

In examining bidder profit, we look at both human bidder profit and aggregate human

and robot profit in each treatment. Auctioneer revenue follows the standard definition.

In single-unit auctions, efficiency is often measured by a ratio of the number of auctions

where the object goes to the bidder with the highest valuation to the total number of

auctions. In the multi-unit context, this definition is not applicable. Instead, we use the

definition of efficiency developed by Kagel and Levin (2001). In this definition, efficiency of

an auction is the ratio of the total surplus of the allocation to the highest possible surplus

among all possible 34 = 81 allocations, where total surplus is the sum of bidder profit and

auctioneer revenue. Then, for each auction, we normalize the ratio by the average surplus

of 81 allocations as follows,

Efficiency =
the actual total surplus− average surplus

the highest possible surplus− average surplus
(3)
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When we compare performance of the two mechanisms, we need to adjust the price

increments such that they are comparable. Recall that, in the experiment, the price in-

crement in the iBEA auction is £5 due to the length of the auction, while in the Vickrey

auction we use a grid size of £1. To address the effect of grid size on performance, for each

performance measure, we present two versions for the Vickrey auction, one representing the

observed results and a second representing the proxy results. In computing the latter, we

input the actual bids submitted under the Vickrey mechanism, and use a proxy agent for

each bidder. The proxy agent uses the actual bids as values, and follows the MBR strategy.

Allocations are determined using the iBEA algorithm with a grid size of £5. When we

use the proxy agents for the Vickrey auction (hereafter Vickrey proxy), iBEA and Vickrey

auctions are more comparable in aggregate performance measures.

[Table 9 about here.]

Table 9 presents summary statistics on the average human profit, total bidder profit,

auctioneer revenue and efficiency under each auction mechanism. This comparison shows

that, while the iBEA auction yields higher total bidder profit and the Vickrey auction

achieves higher revenue, the efficiency comparison is not clear-cut. Since session average

does not control for a number of exogenous factors, we use the following specifications to

model factors affecting the performance of each mechanism.

[Table 10 about here.]

Table 10 presents four OLS specifications. The dependent variable in each specification

is (1) Human Profit, (2) Total Profit, (3) Revenue and (4) Efficiency. The independent

variables are Vickrey Proxy, which equals 1 for the Vickrey auction with a coarser grid

size and 0 for iBEA, DH, the number of random robots, quiz score and a constant. The

top panel includes all human-robot treatments, while the bottom panel only include the SS

treatments. Note that we use the Vickrey proxy in computing each of these measures, so

that it is comparable to the iBEA auction. We summarize our findings below.

Result 5 (Bidder Profit). Total bidder profit is significantly higher in the iBEA auction

than in the Vickrey auction. Furthermore, the number of random robots significantly

increases human profit, and weakly decreases total profit.
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Support. In Table 10, for all human-robot treatments (top panel), for specification (1),

the coefficient for the number of random robots is positive and significant. In specification

(2), the coefficient for Vickrey Proxy is negative and significant, while the coefficient for the

number of random robots is negative and weakly significant at the 10% level. For the SS

treatments (bottom panel), in specification (2), the coefficient for Vickrey Proxy is negative

and significant.

By Result 5, we reject Hypothesis 5. As an ascending version of the Vickrey auction, the

iBEA auction generates significantly higher bidder profit. Consistent with our simulations,

the number of random robots significantly increases human profit.

Result 6 (Revenue). Vickrey auctions generate significantly higher revenue than iBEA

auctions. In addition, the number of random robots significantly decreases revenue in both

auctions. For the SS treatments, a higher quiz score significantly increases revenue.

Support. In Table 10, for specification (3) (top and bottom panels), the coefficient for

Vickrey Proxy is positive and significant. On the top panel, the coefficient for the number

of random robots is negative and significant, while on the bottom panel, the coefficient for

quiz score is positive and significant.

By Result 6, we reject Hypothesis 6. The fact that more than 60% of the last-and-final

bids in iBEA have positive temporary profits (Table 7) indicates that human bidders did

not bid optimally in the iBEA auction, which partially explains Result 6.

[Figure 4 about here.]

We next investigate the efficiency comparisons between the two auctions. Figure 4 con-

tains six panels. The top two panels present the distribution of actual observed efficiencies

in all auctions, pooling across all treatments. The left panel is the efficiency distribution

under the Vickrey auctions, and the right panel is the efficiency distribution under the

iBEA auctions. The middle two panels present the same information comparing iBEA and

Vickrey proxy, while the bottom two panels compares iBEA and Vickrey proxy in the SS

environment only.

Result 7 (Efficiency). Vickrey auction generates the same efficiency as the iBEA auction.

However, 26.3% of the iBEA auctions and 16.5% of the Vickrey auctions achieve 100%
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efficiency. The difference is significant at the 10% level. Furthermore, the number of

random robots significantly decreases efficiency.

Support. In Table 10, for specification (4), the coefficient for Vickrey Proxy is insignifi-

cant for all human-robot treatments (top panel) and SS treatments (bottom panel). The

coefficient for the number of random robots is negative and significant. In the human-

robot treatments, we compute the proportion of auctions achieving 100% efficiency for each

subject, which generates one independent observation for each subject, and compare the

performance of the two mechanisms. A one-sided proportion of t-test yields p = 0.095,

rejecting the null hypothesis of equal proportion in favor of the alternative hypothesis that

iBEA generates a higher proportion of auctions achieving 100% efficiency.

By Result 7, we fail to reject Hypothesis 7. Our results show that, with package bid-

ding, the Vickrey auction achieves the same efficiency as does the ascending iBEA auction.

However, the latter generates a higher proportion of auctions which achieve 100% efficiency.

While Results 5 to 7 compare the aggregate performance of the two auctions for the

human-robot sessions, we now investigate any systematic difference between the human-

robot and human-human treatments.

[Table 11 about here.]

Table 11 reports the p-values for Wilcoxon rank sum tests comparing the human-human

with human-robot treatments for the iBEA (upper panel) and Vickrey (lower panel) auc-

tions respectively. For each comparison, while the null hypothesis is that the performance of

the human-human treatment is the same as that of the human-robot treatment, the alterna-

tive hypothese are stated in row 2 in brackets. Recall that the session average performance

measures are reported in Table 9. For the rank sum tests, we treat each session (bidder) as

an independent observation for the human-human (human-robot) treatments. Results are

summarized below.

Result 8 (Human-human vs. human-robot). In both the Vickrey and iBEA auctions, the

human-human treatments generate significantly higher human profit and significantly lower

revenue compared to the corresponding human-robot treatments. Efficiency comparisons

are not significantly different except in the SS environment, where efficiency is significantly

higher in the human-robot treatments.
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Support. In Table 11, one-sided Wilcoxon ranksum tests yield p < 0.05 for human profit

(except in vRRl) and total profit (except in iSSh), and p < 0.05 for revenue (except in

vRRh), rejecting H0 in favor of H1. While two-sided Wilcoxon ranksum tests yields p > 0.05

for efficiency comparisons in all other human-robot treatments, in the four SS treatments,

one-sided Wilcoxon ranksum tests yield p < 0.05 rejecting H0 in favor of H1 that the

human-robot treatments generate significantly higher efficiency.

Result 8 indicates that, in the human-human treatments in both auctions, bidders be-

have as if they collude to exploit auctioneer revenue. Furthermore, the human-robot treat-

ment in the SS environment generates significantly higher efficiency than the corresponding

human-human treatment, indicating two sources of inefficiency in our experiment, i.e., in-

troducing random robots or other human bidders. However, the way in which a second and

third human bidders cause inefficiency is different from that in which random robots do so.

More specifically, the former results in much greater profit to the human bidders and much

lesser revenue to the auctioneer.

6 Conclusion

Package auctions have become increasingly popular in procurement and complex resource

allocation contexts and thus have stimulated a large body of theoretical research in com-

binatorial auctions in economics and computer science. Because of the concerns over the

deficiencies of Vickrey auctions, several new ascending package auctions have been proposed

to implement efficient allocations under various assumptions. One of the most prominent

new ascending package auctions is the iBEA auction, which achieves approximately efficient

allocation and implements Vickrey payments under minimal assumptions on preferences.

As a first step in using this auction as an actual economic process that solves naturally

occurring problems, we observe the performance of the iBEA auction in the context of simple

situations that can be created in a laboratory. We then assess its performance relative to a

natural and important benchmark, the sealed-bid Vickrey auction.

As the first experimental study of the iBEA auction in comparison with the Vickrey

auction, we use a simple environment where each human bidder competes against two robots

with different levels of bidding intelligence. This implementation creates an environment

free from the strategic uncertainties inherent in interactions between human bidders. As a
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robustness check, we also implement both mechanisms among all human bidders.

Our experiment yields several surprising findings. First, unlike the single-unit Vickrey

auction where bidders tend to overbid in the laboratory, most of our bidders either un-

derbid or bid their true value. A simple dynamic adjustment model captures the learning

dynamics reasonably well. Second, in terms of aggregate performance, while bidder profit is

significantly higher in the iBEA auction, the Vickrey auction generates significantly higher

revenue than does the iBEA auction. While the two auctions achieve the same efficiency, a

higher proportion of iBEA auctions achieves 100% efficiency than does the Vickrey auction.

Lastly, we find that when human bidders compete against robots in a complex environment,

they learn from their robot opponents when the robot strategies are intelligent (e.g., myopic

best responses).

With this first laboratory study of the iBEA auction, we identify several issues that

warrant further empirical study. The first issue is the tradeoff between the speed and

efficiency of the auction as manipulated through setting different price increments. The

larger the auctioneer sets the price increment, the faster the auction converges. However,

the final allocation might be further away from the efficient allocation. In an auction with

a large number of bidders, we expect the second phase of the iBEA auction to take longer.

Thus, it is important to quantify the speed-efficiency tradeoff. The second issue is whether

bidders can detect the second phase of the auction and thus collude to increase bidder

profit. Our human-human sessions result in significantly higher bidder profit compared to

the corresponding human-robot sessions, indicating that collusion might be a concern even

in our simple environment. Lastly, alternative implementations of the iBEA auction might

improve its performance.20 For example, the experimenter can teach or recommend the

MBR strategies to the bidders, or she can show where more profit is available in addition

to report the temporary profit in bundles reported in a round. Both methods can help the

bidder better optimize given the time limits in an experiment or actual implementation.

Empirical investigations of package auctions have important implications not only in

procurement and privatization, but also potentially in the allocation of scarce equipment

time in large scientific collaboratories. Past studies, such as Kwasnica et al. (2005), show

that, with synergies, package auctions tend to outperform auctions without package bidding.

The natural next step is to evaluate the pool of package auction mechanisms under a variety
20We thank an anonymous referee for these suggestions.
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of environments in the laboratory, select those which perform robustly well, and test them

in a field setting.

In selecting the pool of package auctions for practical implementation, iterative auctions

are important for a number of reasons. First, they are potentially more transparent and

should provide better performance in practice. Second, in the real world implementations,

when valuations are too complex to be enumerated with a sealed bid Vickrey auction, it-

erative auctions may perform much more effectively because price discovery guides bidders

in recognizing which parts of their demand to report. When the value of an asset requires

costly investments to be discovered, ascending price auctions generate higher revenue than

their static counterparts (Compte and Jehiel 2007). Similarly, Parkes (2005) shows that

ascending-price auctions can achieve better efficiency than sealed-bid auctions when incor-

porating costly preference elicitation. These theoretical results point to fruitful areas of

future research in evaluating package auction mechanisms. For example, in the laboratory,

we can require participants to pay for every additional bundle that they want to bid for,

where payments are used as proxies for cognitive load. Cognitive load is an important factor

in choosing mechanisms for complex resource allocation, but to our best knowledge it has

not been incorporated in any of the experimental auction studies.
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bidder 1 bidder 2 bidder 3

Package A B AB A B AB A B AB

Value 10 0 10 0 30 30 4 14 22

Phase Round (Bid, Price) (Bid, Price) (Bid, Price)

I 1 (A, 0) (AB, 0) (B, 0) (AB, 0) (AB, 0)

I 2 (A, 0) (AB, 0) (B, 0) (AB, 0) (B, 0) (AB, 5)

I 3 (A, 5) (AB, 5) (B, 5) (AB, 5) (B, 0) (AB, 5)

I 4 (A, 5) (AB, 5) (B, 5) (AB, 5) (B, 5) (AB,10)

I 5 (A, 5) (AB, 5) (B, 5) (AB, 5) (A, 0) (B,10) (AB,15)

I 6 (A, 5) (AB, 5) (B,10) (AB,10) (A, 0) (B,10) (AB,15)

I 7 (A, 5) (AB, 5) (B,15) (AB,15) (A, 0) (B,10) (AB,15)

I 8 (A, 5) (AB, 5) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

I 9 (A, 5) (AB, 5) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

II (A, 5) (AB, 5) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

II 10 (A,10) (AB,10) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

II (A,10) (AB,10) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

II 11 (A,10) (AB,10) (B,20) (AB,20) (A, 0) (B,10) (AB,20)

Notes:

1. Boldface indicates the winning bid after the current round.

2. Italics indicate bids with the last-and-final option.

3. (Bid,Price) indicates that the (Bid, Price) pair is excluded.

iBEA Package Price Piv. Revenue Rebate Final Price Profit

bidder 1 A 10 20 10 0 10

bidder 2 B 20 20 10 10 20

bidder 3 - - - - 0

auctioneer - - - - 10

Vickrey Package Price Piv. Revenue Rebate Final Price Profit

bidder 1 A 10 34 6 4 6

bidder 2 B 30 24 16 14 16

bidder 3 - - - - 0

auctioneer - - - - 18

Note: Piv. Revenue refers to total revenue when bidder i is excluded.

Table 1: A Simple Example of an iBEA Auction Process (Grid Size ε = 5)
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Mechanism Robot Strategy Information Notation # of Subjects Exchange Rate

High iSSh 10 2

iBEA Sincere, Sincere Low iSS` 10 2

High iSRh 10 1

iBEA Sincere, Random Low iSR` 10 1

High iRRh 10 1

iBEA Random, Random Low iRR` 10 1

n/a iHumans 15 1

iBEA (all humans) n/a iHumans 15 1

High vSSh 10 1.25

Vickrey Sincere, Sincere Low vSS` 10 1.25

High vSRh 10 1.25

Vickrey Sincere, Random Low vSR` 10 1.25

High vRRh 10 1.25

Vickrey Random, Random Low vRR` 10 1.25

n/a vHumans 15 1.25

Vickrey (all humans) n/a vHumans 15 1.25

Table 2: Features of Experimental Sessions
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Package Active Bids Bid/Value Underbidding Truthful Bidding Overbidding

A 0.722 0.925 0.606 0.237 0.157

B 0.682 0.906 0.586 0.259 0.155

C 0.677 1.045 0.612 0.243 0.144

D 0.682 0.834 0.599 0.256 0.145

AB 0.859 0.961 0.648 0.176 0.176

AC 0.738 0.912 0.682 0.178 0.140

AD 0.733 0.872 0.695 0.165 0.139

BC 0.730 0.902 0.682 0.166 0.152

BD 0.730 0.891 0.688 0.161 0.151

CD 0.766 0.881 0.668 0.196 0.136

ABC 0.840 0.935 0.671 0.161 0.168

ABD 0.814 0.918 0.685 0.154 0.161

ACD 0.777 0.913 0.688 0.172 0.140

BCD 0.758 0.911 0.674 0.177 0.148

ABCD 0.831 0.952 0.670 0.162 0.168

Table 3: Proportion of Active Bids, Bid/Value Ratio and Proportion of Under-, Truthful,

and Overbidding in the Vickrey Auction
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Dependent Variable: Active Bids

Human-Robot Treatments All Vickrey Treatments

(1) (2) (3) (4)

Value 0.008 0.008 0.007 0.007

(0.002)*** (0.003)*** (0.002)*** (0.002)***

Dsynergy 0.085 0.086 0.076 0.077

(0.021)*** (0.021)*** (0.017)*** (0.018)***

DHS 0.164 0.149

(0.072)** (0.061)**

DH -0.017 -0.016

(0.077) (0.074)

Dhuman 0.107 0.055

(0.061)* (0.071)

Observations 9000 9000 13500 13500

Notes:

1. Coefficients are probability derivatives.

2. Robust standard errors in parentheses are adjusted for clustering at the individual level.

3. Significant at: ** 5% level; *** 1% level.

Table 4: Probit: Factors Affecting the Likelihood of Active Bids in the Vickrey Auction
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Dependent Variable: Bid

(1) (2)

Value 0.919 0.906

(0.024)*** (0.022)***

Auction 0.137

(0.099)

Cum. Profit -0.055

(0.026)**

Dsynergy 0.546

(0.223)**

DHS -0.254

(0.550)

Constant 0.111

(0.617)

Observations 10205 10205

R-squared 0.81 0.51

Notes:

1. Robust standard errors in parentheses are

adjusted for clustering at the individual level.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 5: OLS: Bidding Decision in the Vickrey Auction
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Dependent Variable: PlaceBid

(1) (2) (3) (4) (5) (6) (7)

iSS iSS iSR iSR iRR iRR iHumans

Temp. Profit 0.008 0.008 0.008 0.008 0.019 0.019 0.017

(0.002)*** (0.002)*** (0.003)*** (0.003)*** (0.004)*** (0.004)*** (0.003)***

Dsynergy 0.029 0.027 0.047 0.046 0.066 0.066 0.029

(0.014)** (0.014)** (0.015)*** (0.015)*** (0.021)*** (0.021)*** (0.017)*

MBR 0.12 0.038 0.103 0.14 0.075 0.053

(0.039)*** (0.020)* (0.043)** (0.064)** (0.018)*** (0.026)**

DH 0.065 -0.016 -0.11 -0.062 -0.05 -0.073

(0.056) (0.051) (0.073) (0.077) (0.085) (0.083)

DH ×MBR 0.174 -0.08 0.046

(0.065)*** (0.067) (0.041)

Observations 23841 23841 23454 23454 21051 21051 14497

Notes:

1. Coefficients are probability derivatives.

2. Robust standard errors in parentheses are adjusted for clustering at the individual level.

3. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 6: Probit: Likelihood of Bidding in the iBEA Auction

Treatment Mean Temp. Profit Negative Non-Negative Total Negative/Total

iSS` 4.08 38 81 119 31.9%

iSR` 1.93 100 113 213 46.9%

iRR` 2.44 45 127 172 26.2%

iSSh 1.36 128 108 236 54.2%

iSRh 3.11 46 104 150 30.7%

iRRh 2.29 92 138 230 40.0%

iHumans 3.22 28 91 119 23.5%

Pooled 2.43 477 762 1239 38.5%

Table 7: Last-and-Final Summary Statistics for the iBEA Auction
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Dependent Variable: Temp. Profit of Last-and-Final Bids

SS SR RR

Round -0.73 -0.67 -0.57

(0.141)*** (0.165)*** (0.170)***

DH -3.10 1.32 0.28

(2.031) (1.819) (1.826)

Constant 9.15 6.19 5.86

(2.566)*** (2.117)*** (1.966)***

Observations 355 363 402

R-squared 0.22 0.14 0.17

Notes:

1. Robust standard errors in parentheses are adjusted

for clustering at the individual level.

2. * Significant at: * 10% level; ** 5% level; *** 1% level

Table 8: OLS: Temporary Profit of Last-and-Final Bids
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Human Profit Total Profit

Treatment iBEA Vickrey Vickrey (proxy) iBEA Vickrey Vickrey (proxy)

SS` 3.04 2.72 3.13 16.29 10.85 13.17

SR` 3.03 1.80 2.77 13.61 8.56 10.95

RR` 3.93 3.30 4.27 15.05 9.58 11.71

SSh 2.71 2.48 2.91 16.84 10.06 11.75

SRh 3.53 2.96 3.67 15.77 9.75 11.87

RRh 3.95 2.73 3.17 15.74 10.10 11.59

Human 7.26 4.51 5.03 21.79 13.52 15.08

Revenue Efficiency

Treatment iBEA Vickrey Vickrey (proxy) iBEA Vickrey Vickrey (proxy)

SS` 13.87 20.12 16.58 78.0% 95.1% 83.5%

SR` 14.59 20.04 16.75 64.6% 72.7% 64.8%

RR` 12.93 18.88 15.84 65.6% 70.8% 61.8%

SSh 13.05 20.44 17.33 79.9% 92.6% 78.9%

SRh 12.77 19.92 16.62 71.7% 80.7% 69.1%

RRh 11.92 17.81 15.21 62.7% 64.8% 55.0%

Human 5.30 16.42 13.51 56.2% 79.5% 67.2%

Table 9: Aggregate Performance of the Two Mechanisms: Session Average
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(1) (2) (3) (4)

Dependent Variable: Human Profit Total Profit Revenue Efficiency

All Human-Robot Treatments

Vickrey Proxy -0.176 -3.514 2.915 -0.028

(0.386) (0.639)*** (0.455)*** (0.028)

DH -0.033 0.453 -0.594 -0.001

(0.313) (0.529) (0.402) (0.022)

# of Random Robots 0.441 -0.495 -0.617 -0.094

(0.172)** (0.272)* (0.232)*** (0.011)***

Quiz Score 0.205 -0.31 0.449 0.019

(0.284) (0.428) (0.321) (0.02)

Constant 2.072 17.133 12.201 0.721

(1.210)* (1.837)*** (1.360)*** (0.084)***

Observations 1200 1200 1200 1200

R-squared 0.01 0.07 0.07 0.07

Only SS Treatments

Vickrey Proxy 0.054 -3.536 2.843 0.007

(0.505) (0.882)*** (0.787)*** (0.025)

DH -0.269 -0.485 0.025 -0.012

(0.415) (0.748) (0.716) (0.019)

Quiz Score 0.167 -1.032 1.192 0.028

(0.317) (0.605)* (0.513)** (0.02)

Constant 2.297 21.218 8.35 0.678

(1.280)* (2.500)*** (2.203)*** (0.084)***

Observations 400 400 400 400

R-squared 0 0.10 0.09 0.01

Notes:

1. Robust standard errors in parentheses are adjusted for clustering at the individual level.

2. Significant at: * 10%; ** 5%; *** 1% level.

Table 10: OLS: Factors Affecting Aggregate Performance of the Two Mechanisms
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Treatments Human Profit Total Profit Revenue Efficiency

(H1) (xHuman > · · · ) (xHuman > · · · ) (xHuman < · · · ) (specified below)

iHuman vs. iSSl 0.016 0.066 0.016 0.016 (<)

iHuman vs. iSRl 0.027 0.016 0.016 0.283 (6=)

iHuman vs. iRRl 0.027 0.026 0.016 0.283 (6=)

iHuman vs. iSSh 0.016 0.098 0.016 0.016 (<)

iHuman vs. iSRh 0.016 0.043 0.016 0.133 (6=)

iHuman vs. iRRh 0.027 0.043 0.016 0.667 (6=)

iHuman vs. iRobot 0.012 0.028 0.008 0.120 (6=)

vHuman vs. vSSl 0.026 0.043 0.020 0.016 (<)

vHuman vs. vSRl 0.026 0.016 0.016 0.667 (6=)

vHuman vs. vRRl 0.099 0.016 0.043 0.133 (6=)

vHuman vs. vSSh 0.026 0.043 0.043 0.043 (<)

vHuman vs. vSRh 0.043 0.015 0.016 0.667 (6=)

vHuman vs. vRRh 0.042 0.016 0.259 0.053 (6=)

vHuman vs. vRobot 0.025 0.013 0.027 0.937 (6=)

Notes:

1. iHuman (vHuman) represents the human-human sessions in the iBEA (Vickrey) auctions.

2. iRobot (vRobot) represent the pooled human-robot sessions in the iBEA (Vickrey) auctions.

Table 11: P-values of Aggregate Performance Comparisons between Human-Robot and

All-Human Sessions
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Figure 1: Simulated Profit for Human Bidder under Three Environments in the Vickrey

Auction
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Figure 2: Simulated Profit for Human Bidder under Three Environments in the iBEA
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Figure 3: Proportion of MBR and non-MBR Bids in the iBEA Auction
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Figure 4: Distribution of Observed Efficiency in the iBEA and Vickrey Auctions
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