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Abstract

We study two package auction mechanisms in a laboratory setting, a sealed bid
Vickrey auction and an ascending version of Vickrey, the iBEA auction. Unlike the
single-unit Vickrey auction, where bidders tend to overbid in the laboratory, most of
our bidders either underbid or bid their true values. Furthermore, at the aggregate
level, Vickrey generates significantly higher revenue and efficiency than iBEA. We also
find that human bidders learn from their robot opponents when the robot strategies are
(myopic) best responses.
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1 Introduction

In recent years, the use of various multi-object auction mechanisms to determine resource
allocation has been rapidly increasing. In particular, the Federal Communications Com-
mission (FCC) spectrum auctions, characterized by synergies across licenses, stimulated
tremendous research interests in complex auction design for multiple objects and with syn-
ergies. Since 1994, the FCC has used the Simultaneous Multiple Round (SMR) auction to
allocate spectrum licenses and raised over $41 billion in revenue (Milgrom 2004). However,
this auction format does not allow package bidding. Ledyard, Porter and Rangel (1997)
demonstrate that the performance of the FCC design degrades in the presence of comple-
mentarities. More generally, when bidder valuations for multiple objects are super-additive,
package bidding is necessary to increase efficiency, seller revenue and bidder willingness to
participate (Bykowsky, Cull and Ledyard 2000). Economic research on package auction
mechanisms helps policy makers such as the FCC as well as others who must allocate com-
plex resources. For example, FCC auction No. 31 for selling spectrum licenses in the 700
MHz band, was designed to permit bids for any of the 4095 possible packages of the twelve
licences on offer.1

The earliest research on package auction design is a proposal for a sealed bid com-
binatorial auction sale of paired airport takeoff and landing slots proposed by Rassenti,
Smith and Bulfin (1982). In another study, Banks, Ledyard and Porter (1989) present two
kinds of iterative package auctions to allocate uncertain and unresponsive resources, AUSM
(Adaptive User Selection Mechanism) and the iterative Vickrey-Clarke-Groves mechanism
(Vickrey (1961), Clarke (1971), Groves (1973)). In laboratory experiments, these package
auctions significantly outperform markets and administrative procedures. More recently,
Kwasnica, Ledyard, Porter and DeMartini (2005) create and test a new design for multi-
object iterative auctions by merging the better features of the AUSM and the FCC SMR
designs. The resulting new Resource Allocation Design (RAD) is shown to perform better
than either parent.

Another important application of package auction design is the Business-to-Business
(B2B) auction, which is predominantly multi-object and often involves synergies. Package
auctions have the potential to provide value to both buyers and sellers of goods and services.
The descending Dutch auction used to sell flowers in Aalsmeer, Holland is a simple version
of a package auction for homogeneous goods (Katok and Roth 2004). More recently, package
auctions have been successfully applied to transportation procurement. For example, Sears
Logistics Services is the first procurer of trucking services to use a package auction to reduce
its costs. Since 1993, it consistently saved 13 percent over past procurement practices,
mostly through bilateral negotiations (Ledyard, Olson, Porter, Swanson and Torma 2002).
Finally, the London bus routes provide an example of the use of a package auction format
in public procurement. In this instance, the local transportation authority has adopted a
form of package auction because of expected economic synergies among routes located in
the same area of London. The London bus routes auction has led to increased quality of
service and lower costs, and thus is considered a success (Cantillon and Pesendorfer 2006).

Empirical investigations of package auctions have important implications not only in pro-
curement and privatization, but also potentially in the allocation of scarce equipment time

1See http://wireless.fcc.gov/auctions/31/ for more information.
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in large scientific collaboratories.2 The National Science Foundation and other federal agen-
cies are poised to make significant investments in expanding the ability of geographically-
distributed groups of scientists to conduct research via the Internet. There are currently
over eighty collaboratories in use within multiple scientific communities, including space
physics, HIV/AIDS, software engineering and neuroimaging (Finholt 2002). In many col-
laboratories, a critical feature of the equipment time allocation problem is that contiguous
time slots are more valuable than the sum of separate slots, i.e., user valuation for multiple
slots exhibits synergy. Therefore, package auctions might be an important mechanism in
achieving efficient allocation of equipment time.

Despite successful results for package auctions, the theoretical properties of these auc-
tions are not often understood. Therefore, it is unclear whether a given choice of design
option is the most appropriate one.

An important standard for nearly all mechanism design work, and for auctions in par-
ticular, is the Vickrey-Clarke-Groves (VCG) mechanism. The VCG mechanism is dominant
strategy incentive compatible, i.e., bidding one’s true valuation is always optimal regardless
of others’ strategies. Furthermore, it implements the efficient outcome. For the single object
case, VCG mechanism becomes the familiar second-price auction. In the auction context,
we follow convention and call the VCG mechanism Vickrey auctions.

However, despite its attractive theoretical properties, the Vickrey auction has some
disadvantages. In the package auction context, there are three main concerns.3 First, the
Vickrey auction might be vulnerable to collusion. For example, bidders have the incentive
to use shill bidders through which they could manupulate the allocation and prices in their
favor. Second, it might suffer from the monotonicity problem,4 i.e., adding bidders might
reduce equilibrium revenues. Third, previous laboratory experiments show that, in the
single object case, the dominant strategy in second-price auctions is not transparent. Many
experimental subjects consistently overbid in second-price auctions and do not seem to learn
from prior experience (see, e.g., Kagel (1995)).

Contrary to the economist belief that Vickrey auctions are rarely used in practice,
Lucking-Reiley (2000b) presents evidence that Vickrey auctions have long been the pre-
dominant auction format for mail sales of collectible postage stamps, at least 65 years
earlier than the publication of Vickrey’s seminal paper. Vickrey-like auctions have also
been appearing in auctions on the Internet, sometimes with an additional feature of “proxy
bidding.” In these auctions, a bidder tells his proxy his maximum willingness to pay. The
proxy keeps this information secret and bids on the bidder’s behalf in an ascending auc-
tion in a pre-announced increment. If every bidder uses a proxy, then the bidder with the
highest maximum price wins and pays (approximately) the second highest price. The most
prominent examples of such auctions include Amazon and eBay.5

To retain the advantages of the sealed-bid Vickrey auctions while reducing their dis-
2First proposed in the late eighties, a collaboratory is a center without walls, in which researchers can

perform their research without regard to physical location - interacting with colleagues, accessing instrumen-
tation, sharing data and computational resources, and accessing information in digital libraries (Wulf 1993).

3Note the first two problems do not appear when all goods are substitutes for all bidders.
4See Milgrom (2004) Chapter 8 for examples.
5Ockenfels and Roth (2002) analyze the closing rules of eBay and Amazon. They show that eBay auctions,

with a hard closing rule, give bidders incentives for sniping, while Amazon auctions, with a soft closing rule,
do not give such incentives and hence are a more faithful dynamic version of Vickrey.
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advantages, researchers have searched for an ascending bid package auction with compara-
ble theoretical properties. One example is the Ausubel-Milgrom Ascending Proxy auction
(Ausubel and Milgrom 2002), which replicates the performance of the Vickrey auction when
all goods are substitutes, and has full-information equilibrium outcomes that are bidder-
optimal points in the core. Another example is the iBundle Extend & Adjust (iBEA)
auction (Parkes and Ungar 2002), an ascending bid auction with package bidding which
implements efficient allocation and Vickrey payments in ex post Nash equilibrium, with
only a free-disposal requirement on agent preferences. Thus, theoretically, iBEA represents
a major advance in modeling package auctions.

In this paper, we investigate two package auction mechanisms in the laboratory, Vickrey
and iBEA, to evaluate their performance among boundedly rational individuals. Our study
advances research on auctions in two ways. First, compared to previous experimental studies
of package auctions, the theoretical properties for these two auctions are well understood.
Second, this is the first experimental study of iBEA, a new promising ascending bid package
auction mechanism.

We study these two mechanisms in a simple environment where three bidders compete
for four items (and thus 15 packages), with synergies across subsets of the items. Each
human bidder competes against two automated bidders. In half of the treatments, the
automated bidders are programmed to follow the dominant strategy in Vickrey, and My-
opic Best Response in iBEA, while in the other half of the treatments, automated bidders
are programmed to follow random, or zero-intelligence strategies. The use of automated
agents serve two purposes. First, it allows the experimenter to compare the performance
of the two mechanisms in an environment free from the strategic uncertainties inherent in
interactions between human bidders.6 Second, the use of automated agents is becoming
increasingly widespread in Internet auctions, which allow for conveniently asynchronous
bidding (Lucking-Reiley 2000a). Therefore, it is important to study how humans react
when they bid against automated agents.

The main results of our two auction scenarios present some unexpected findings. First,
contrary to previous experimental studies of sealed bid vs. ascending bid auctions, where
ascending auctions tend to outperform their sealed bid counterpart, in our study, the sealed
bid Vickrey auctions generate significantly higher efficiency and revenue than the iBEA
auctions. Second, unlike in second-price auctions where most participants overbid, most
participant in our Vickrey package auctions either underbid or bid their true values. Finally,
we find that human bidders learn from automated agents that use “intelligent” strategies.

The rest of the paper is organized as follows. Section 2 introduces the auction mech-
anisms. Section 3 presents the experimental design. Section 4 presents the hypotheses.
Section 5 presents the analysis and main results. Section 6 concludes.

2 The Auctions

In this section, we introduce our two auction mechanisms. To do so, we first set up a simple
framework that allows us to explain the auctions clearly.

6See, e.g., Kagel and Levin (2001) for an experiment with human bidders against automated agents in
multi-unit auctions of homogeneous goods.
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In this framework, let N = {1, . . . , n} be a finite set of bidders. Let i denote an agent,
where i = 0 is an auctioneer and i > 0 is a bidder. N0 = N ∪{0} is the set of all bidders and
the auctioneer. Let K = {1, . . . , k} represent the set of objects to be sold, and X = {0, 1}k

represent the set of combinations of objects. Let Bi be a set of bids of bidder i. Each bid is
a pair, (x, p), where x ∈ X corresponds to the packages desired and p ∈ R is the bid price.
Let vi : X → R+ be bidder i’s valuation function that assigns a value to a package. Finally,
δ = (δ1, . . . , δb) is an indicator vector, where δj ∈ {0, 1} indicates whether bid (xj , pj) is
winning or losing, and where b is the total number of bids.

As the winner determination problem is part of every package auction design, we for-
mally define this problem for our experiment.

Definition (Package auction winner determination problem). The package auction
winner determination problem is to maximize the sum of all bids, indicating each bid as
winning or losing, under the constraint that each item can be sold to at most one bidder:

max
δ

b∑

j=1

δjpj subject to
∑

j∈{j:δj=1}
xj ≤ (1, 1, . . . , 1). (1)

One of the most important goals in multi-object auctions is for all bidders to bid truth-
fully. We now define a truthful bid: a bid (x, p) ∈ Bi is a truthful bid, if vi(x) = p. The
allocation associated with the solution to the winner determination problem maximizes the
aggregate surplus, when every bidder bids for all packages and the bids are all truthful,

Although it is desirable that all bidders truthfully bid for all packages, in theory, de-
pending on the auction mechanism, it might not always be optimal for a bidder to bid her
true value, and in practice, it is not easy for bidders to calculate all values for all possible
packages. To design a good auction mechanism, we would like to obtain the most efficient
allocation among feasible outcomes. In the design of a multi-object auction mechanism,
there are three potential problems to overcome.

1. The exposure problem: When items are not substitutes and bidders cannot bid on
packages, bidders are usually exposed to the risk that they may overpay. For exam-
ple, suppose that there are two items and that bidder i’s valuations exhibit strong
complementarity, such that vi((1, 0)) = vi((0, 1)) = 1 < 3 = vi((1, 1)). He may bid on
each item at prices more than 1, expecting that he gets both of the items. However,
it is possible that he could get only one item while paying more than 1. Auctions
with package bidding, such as the two auctions in this study, should overcome this
problem.

2. The threshold problem: Suppose that there are four bidders and three items to trade
and that v1((1, 0, 0)) = v2((0, 1, 0)) = v3((0, 0, 1)) = 1.5 and v4((1, 1, 1)) = 4. In this
setting, it is efficient to allocate the items to Bidders 1, 2 and 3. However, suppose
that Bidders 1, 2 and 3 bid on their desirable item at price 1, respectively, and that
Bidder 4 bids on the package of all items at price 3.6. In this case, the winning bid is
Bidder 4’s bid, but none of Bidders 1-3 can overbid on Bidder 4’s bid. The ascending
bid auction, iBEA, overcomes the threshold problem, which we will explain in Section
2.
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3. Computational problems: There are two computational problems in package auctions,
the auctioneer’s and the bidders’. For the auctioneer, the problem is to solve Eq. (1),
which is NP-complete (Rothkopf, Pekec and Harstad 1998).7 For the bidders, they
must evaluate all possible combinations, which can be cognitively difficult. Evaluation
of the latter is where experimental research can be especially valuable.

In the following sections, we first introduce the Vickrey and iBEA auctions, and then
discuss their respective theoretical properties.

2.1 Vickrey Auction with Package Bidding

A Vickrey auction with package bidding is an extension of the more familiar second-price
auction. At the beginning of each auction, each bidder selects the packages he would like to
bid on, and the amount he would like to bid for each package. Each bidder can choose to
bid on as many packages as he wants, and he can bid on a single object multiple times, by
bidding on several packages that contain that item. However, no matter how many packages
a bidder bids on, he will never win more than one package. This type of bidding is called an
exclusive-or (XOR) bid. Since all items are weakly complements in our experiment, XOR
is not necessary for incentive compatibility. However, to minimize the interface difference
between the two mechanisms, we impose XOR bids in the Vickrey auction, as they are
required in the iBEA auction.

Next, once all bidders have submitted their bids, the auctioneer will choose the combi-
nation of submitted bids that yields the highest sum of bids. The set of bidders winning a
package are the winning bidders.

After determining the winning bidders, the auctioneer then, one at a time, chooses each
winning bidder as a pivotal bidder. The auctioneer examines the bids again, but ignores
the bids of the pivotal bidder. The auctioneer determines the allocation of goods that
maximizes the sum of bids, using the same rules as before, but not considering any bids
placed by the pivotal bidder. Once this new allocation has been determined, the auctioneer
compares the sum of bids generated by this allocation with those generated when no bids
are excluded.

At the end of the auction, the amount that the winning bidders are required to pay
depends on the additional revenue that each bidder generated, which is calculated by com-
paring the original revenue obtained by the auctioneer versus the revenue obtained by the
auctioneer when the given bidder is pivotal. The following example from the experimental
instruction illustrates how this process works. The fictitious currency used in this example
(and throughout the experiment) is pounds (£).

7A problem is in P if it is solvable in polynomial time by a deterministic Turing machine (e.g., a program on
a conventional computer), and a problem is in NP if it is solvable in polynomial time by a non-deterministic
Turing machine. While P-problems are also in the class of NP, it is believed that NP problems are not
in P. That is, NP problems are not solvable in polynomial time by a conventional computer in the worst
case. Furthermore, an NP-complete problem is the “hardest” among all NP problems in the sense that
any NP problem can be reduced into the NP-complete problem using a deterministic Turing machine. In
sum, in combinatorial auctions, the auctioneer needs to solve an NP-complete problem that is believed to
be unsolvable in polynomial time (Weisstein 2002).
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Example: Suppose that there are three bidders and four objects to allocate,
and the following bids are submitted:

Package Price Status
Bidder 1 AB £50 winning
Bidder 2 CD £40 winning
Bidder 3 ABCD £60
Bidder 3 AB £30

As shown in the table, the bids from Bidder 1 and 2 are the winning bids,
because they generate the highest revenue for the auctioneer £50 + £40 = £90.

However, the auctioneer does not ask Bidder 1 to pay £50. Suppose we
choose Bidder 1 as a pivotal bidder, and ignore his bids. The winning bids then
become Bidder 2’s bid on CD and Bidder 3’s bid on AB.

Package Price Status
Bidder 1 AB £50 winning
Bidder 2∗ CD £40 winning
Bidder 3 ABCD £60
Bidder 3∗ AB £30 winning

In this case, the auctioneer calculates the revenue that those winning bids would
generate, which is £40 + £30 = £70. Thus, the additional revenue that Bidder
1 generates is £20, since £90 – £70 = £20. This £20 is the price adjustment for
Bidder 1. Therefore, Bidder 1 pays £50 and receives £20 back. His final price
is £30.

The Vickrey auction is dominant strategy incentive compatible and implements an
efficient outcome. Each bidder ends up with a Vickrey payoff in equilibrium. However, it
has some shortcomings. First, it is vulnerable to collusion. Second, the revenue under a
Vickrey auction can be very low. Third, the dominant strategy in a Vickrey auction might
not be transparent when it is implemented with boundedly rational people. Many previous
experimental studies on single unit auctions (see Kagel (1995) for a survey) demonstrate
that bidders systematically overbid in single-unit Vickrey auctions. More recently, Isaac
and James (2000) show that, in an experimental setting with two items (and thus three
packages), Vickrey auctions with package bidding consistently generate higher efficiency
than those without package bidding. However, they do not compare a Vickrey package
auction with an ascending package auction. Based on previous experimental results which
mostly concentrate on single-unit auctions, we expect the ascending bid auctions to achieve
higher efficiency than the Vickrey auction in the multi-object setting with package bidding.

2.2 iBundle Extend & Adjust (iBEA) Auction

The iBundle Extend & Adjust (iBEA) auction is proposed by Parkes and Ungar (2002).
It is an ascending-price generalized Vickrey auction. It maintains non-linear and non-
anonymous prices on packages, and terminates with approximately efficient allocation and
Vickrey payments. To achieve these properties, the mechanism requires a myopic best
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response, which is an ex post Nash equilibrium. In an iBEA auction, each auction takes
place in several rounds. Let ε be the price increment. The choice of ε involves a tradeoff
between the speed of the auction and the closeness to efficiency of the final outcome. That
is, a smaller ε can achieve more efficient outcomes, at the cost of a longer auction. An
outline of the iBEA process is as follows:

1. The auctioneer initializes prices for all packages.

2. At the beginning of each round, for each bidder, the auctioneer announces “ask prices”
pi(t) for all packages to bidder i.

3. Given the prices, each bidder can bid on as many packages as she wants, and can
bid on a single item multiple times, by bidding on several packages that contain that
item. Each bidder’s submitted bids, Bi(t), must satisfy the following rules:

(a) Winning bid resubmission rule: ∃(x, p) ∈ Bi(t), such that (x, p) is a winning
bid in the previous round. That is, if a bidder has made a winning bid in the
previous round, she is obligated to bid on that package, at the same price, in the
next round. Once a bid is losing, a bidder has no further commitment to bid on
that package, unless he chooses to do so.

(b) Last-and-final bid: The last-and-final option allows a bidder to continue to bid for
a package when the bid price is narrowly above the object’s value. Once a bidder
chooses the last-and-final option on a package, he receives a small discount, ε,
and the last-and-final bid is automatically resubmitted at the same price in every
round until the auction terminates. Therefore, even if the price for that package
increases, a bidder cannot increase his bid on that package.
The last-and-final option facilitates the computation of Vickrey prices. It also
reveals to the auctioneer a bidder’s approximate true value for a package.

4. If there are no new bids, then the auction terminates. Otherwise, given {Bi(t)}i∈N ,
the auctioneer solves Eq. (1) and revises ask prices to each bidder in the following
manner:

(a) The ask prices for a bidder with any winning bid(s) remain the same as in the
previous round.

(b) The prices for packages with last-and-final bids remain the same as in the previous
round.

(c) The price for each package of a losing bid increases by ε.

(d) All ask prices are adjusted to be self-consistent, i.e., the price for a package
should not be less than the price for any of its subsets.

The auctioneer proceeds to the next round t + 1, then returns to step 2.

In the iBEA auction, there are two phases to determine the auction’s outcome. The
auctioneer uses Phase I to determine the final allocation and Phase II to compute the final
prices and Vickrey discounts. Phase I terminates when all agents who submit bids are
assigned a package, and the allocation is the final allocation. The auction then proceeds to

8



Phase II. In each round of Phase II, the auctioneer selects a pivotal bidder and ignores this
bidder’s bids to compute his externality. When she computes all externalities, the prices
are determined, from which she computes the Vickrey payoffs, in the same manner as in
the sealed bid Vickrey auction.

Just as Ausubel and Milgrom (2002) rely on the assumption of a straightforward bidding
strategy, in an iBEA auction, it is assumed that each bidder takes a Myopic Best-Response
(MBR). We say bidder i takes a myopic best-response to the ask prices pi(t) announced by
the auctioneer, if

Bi(t) =
{

(x, p)
∣∣∣vi(x, p)− p ≥ max

{
max
z∈X

{vi(z, p(z))− p(z)} , 0
}
− ε and p = p(x)

}
. (2)

where p(x) is the ask price of package x for bidder i. The MBR strategy chooses ε-maximized
packages, i.e., packages arbitrarily close to the best package.

We now explain MBR in more detail. We define a bidder’s temporary profit as vi(x, p(x))−
p(x). Therefore, when a bidder examines his menu, he first looks for any packages on which
he has a negative temporary profit. For those packages that have a negative profit, he adds
ε to his temporary profit, because he knows that he can buy the package with an ε discount
using the last-and-final option. He does not change his temporary profit for a package on
which he currently has a positive profit. He then examines the revised temporary profits
for all packages, and finds the package that gives him the greatest revised temporary profit.
There are two possibilities:

1) If his greatest possible profit is greater than or equal to ε, he will bid on all packages
that give him a revised temporary profit within ε of the maximum temporary profit.
For example, if one package gives him a temporary profit of £17, no package gives
him a profit of more than £17, and ε = £5, then he will bid on all packages that give
him a temporary profit of at least £17 – £5, or £12.

2) If his greatest possible profit is less than ε, he will bid only on those packages that
have a revised temporary profit greater than or equal to 0.

Under the assumption of a MBR, we can achieve competitive equilibrium prices and
efficiency. More precisely, if bidders follow the MBR, then the vector of ask prices {pi(t)}i∈N

is a competitive equilibrium price vector after the end of Phase I. As ε → 0, the final
allocation becomes arbitrarily close to the efficient allocation. Furthermore, Phase II allows
the auctioneer to compute Vickrey payoffs. Parkes and Ungar (2002) prove that the MBR
is incentive compatible: MBR is an ex post Nash equilibrium of iBEA, as ε → 0.

To illustrate how the iBEA auction works, we use a simple three-bidder, two-item ex-
ample. In this example, we assume that all bidders follow a MBR strategy. Furthermore,
we set ε = 5.

[Table 1 about here.]

Table 1 illustrates how iBEA works. The top panel presents Phases I and II round-by-
round and the bottom panel compares the results with those of the Vickrey auction.

As shown in Table 1, for Bidder 1, the values of A, B and AB are (10, 0, 10). For
Bidders 2 and 3, they are (0, 30, 30) and (4, 14, 22), respectively.
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In round 1, the offered prices are the same. The auctioneer breaks the tie by randomly
choosing as many winning bidders as possible, and Bidders 1 and 2 are selected. Since
Bidder 3 does not win any package, the auctioneer raises the offered prices for Bidder 3.
Specifically, the price for the losing bid on AB is raised by an increment of 5.

In Round 2, the highest temporary profit of Bidder 3 is 17 = 22−5. Bidder 3, following
the MBR, is willing to bid on any package whose temporary profit is above 12 = 17 − 5.
Bidder 3 bids on (AB, 5) and (B, 0), since the temporary profit of each package is 17 and
14, respectively. The auctioneer chooses (AB, 5) from Bidder 3 as the winning bid for
Round 2. The process continues.

Notice, however, that Bidder 3 makes last-and-final bids on (A, 5) and (B, 15) in Round
8, because the offered prices are above the value of those packages. These bids are submitted
with a discount of 5 and become (A, 0) and (B,10), respectively. At the end of Round 9,
there is no new bid. Consequently the allocation of items is finalized: Bidder 1 receives A
and Bidder 2 receives B.

The auction proceeds to Phase II. In this phase, the auctioneer randomly chooses one
of the winners as a pivotal bidder. Let us select Bidder 2 in this example. The auctioneer
excludes Bidder 2’s bids from the bids submitted in Round 9 and selects a new set of wining
bids. The new winning bid is (AB, 20) from Bidder 3. So, the auctioneer raises the offered
prices for Bidder 1 and proceeds to Round 10. In Round 10, (A,10) from Bidder 1 and
(B, 10) from Bidder 3 are selected as the winning bids, and there is no new bid. Choosing
Bidder 1 as the next pivotal bidder, the auctioneer goes through the same process. At the
end of Round 11, since there is no new bid and no winner for the next pivotal bidder, the
auction terminates.

Once the auction has ended, the auctioneer determines the price adjustment (rebate)
for Bidders 1 and 2. Note that the revenue is 30 before any price adjustment. Based on the
offered prices at the end of the auction, the auctioneer calculates the additional revenue that
each winner generates. When Bidder 1 is pivotal, Bidder 2 receives B and Bidder 3 receives
A and the revenue is 20. Thus, the additional revenue from Bidder 1 is 10 = 30−20, which
is the price adjustment for Bidder 1. Similarly, the price adjustment for Bidder 2 is 10. All
payoff information is summarized in the bottom panel of Table 1.

Although iBEA has more desirable properties than any other ascending package auc-
tions, it has not been tested in a laboratory setting. Past experiments on single-unit auc-
tions show that the ascending bid auction, e.g, English clock auction, achieves higher ef-
ficiency than the sealed bid Vickrey auction, even though the solution concept is weaker
(Kagel 1995). The ascending auction provides more feedbacks, which makes the optimal
strategy more transparent than its sealed bid counterpart. Therefore, it is interesting to see
whether this superior performance of the ascending bid auction carries over to a multi-object
package bidding context.

3 Experimental Design

Our experimental design reflects both theoretical and technical considerations. Specifically,
we are interested in three important questions. First, how do the Vickrey and iBEA auc-
tions compare in performance? Second, how do human subjects respond to the degree of
rationality in the environment? Third, do human subjects imitate bidding strategies of
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their robot opponents in the auction settings? We describe our experimental environment
and procedures below.

3.1 The Economic Environment

In each auction, three bidders compete for four items (A, B, C and D), and thus 15
packages.8 Each human subject competes against two automated bidders, i.e., computer
programs (or “robots”). In each session, subjects are informed that they interact with
robots. Using robots gives us more control over each human subject’s environment. For
the human participants, this environment reduces the strategic uncertainties inherent in
interactions between human bidders. Furthermore, it allows us to observe human subject
reactions when they interact with robots. The latter, in itself, has important implications
for e-commerce (Eisenberg 2000).

We implement a 2 × 3 × 2 design. In the first dimension, we compare the two mech-
anisms, the Vickrey and iBEA auctions. In the second dimension, we implement three
combinations of robot bidding strategies. As Sincere bidding (S) leads to efficient alloca-
tion in both mechanisms, while Random bidding (R) represents zero-intelligence, we set up
three different combinations of these strategies, SS, SR and RR. In SS, both robots follow
Sincere bidding; in SR, one follows Sincere and the other follows Random bidding; and in
RR, both follow Random bidding. As we are interested in whether a subject will imitate
a certain strategy when told one of the robots follows such a strategy, we design a third
dimension with two information conditions. In the low information treatment, subjects are
told that they are competing against robots; however, the robot bidding strategies are not
explained to the subjects. In the high information condition, we explain the robot strategies
in the instructions.9

We now describe bidder preferences in our experimental setting. Let Vi be the value of
package i. The value for each item is drawn independently from a uniform distribution on
{0, 1, 2, · · · , 10}. The value of a package is the sum of the values of the items in the package
plus the bonus value for certain combinations of items due to synergy. A human bidder
and the first robot derive synergy from A and B. In the experiment, we choose a CES
function to represent this preference. Thus, the value of A and B together equals VAB =
(V ρ

A + V ρ
B)1/ρ. The CES function allows us to control for the degrees of complementarity

and substitutability. When ρ > 1, VAB < VA + VB. When ρ = 1, VAB = VA + VB. When
0 < ρ < 1, VAB > VA + VB, i.e., A and B have synergy. In the experiment, we choose
ρ = 0.9, as we are interested in the case when synergy is present. Similarly, the second robot
derives synergy from C and D. For example, if a human bidder or Robot 1 has package
ABCD, the value equals VABCD = VAB + VC + VD. If Robot 2 has the same package, the
value equals VABCD = VA +VB +VCD. Since the human bidder and Robot 1 have the same
preference, the environment is more competitive for each than it is for Robot 2.

In the iBEA auction, we set ε = £5, since the smallest grid size is £1, and ε = £5
generates a reasonable speed of convergence in the lab. In Section 5, we use simulations to
compare the performance of the two mechanisms using the actual grid size of ε = £1 for
Vickrey and ε = £5 for iBEA, as well as the same grid size of ε = £5 for both auctions.

8These packages are A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, and ABCD.
9The instructions are quite lengthy; they are available at http://www.si.umich.edu/̃ yanchen/
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3.2 Experimental Procedures

Our experiment involves 8 to 10 human subjects per session. At the beginning of each
session, each subject is given printed instructions. After the instructions are read aloud,
subjects are encouraged to ask questions. The instruction period takes, on average, 21
minutes for iBEA and 14 minutes for Vickrey. After receiving the instructions, subjects
take a quiz designed to test their understanding of the mechanisms. At the end of the quiz,
the experimenters go through the answers with the group of subjects. The quiz takes an
average of 17 minutes for iBEA and 11 minutes for Vickrey. At the end of the quiz, subjects
randomly draw a PC terminal number. Each subject then sits in front of the corresponding
terminal and starts the experiment.

In each session, each subject participates in 10 auctions. As we are interested in the
effects of learning on bidding behavior, there are no practice auctions. At the beginning
of each auction, the value for each item is randomly drawn from a uniform distribution on
{0, 1, 2, · · · , 10} for each bidder.

In the Vickrey treatments, each subject is informed of the value of the 15 packages on
his screen. He can enter an integer bid for any of the 15 packages.10 Note that a zero bid on
a package is treated differently from no bid. A subject can be allocated a package on which
he bids zero, but can never be allocated a package that he does not bid on. Meanwhile,
each robot submits a bid on each package, following the pre-assigned strategy. A robot
following the Sincere strategy bids its true value for each package, while a robot following
the Random strategy randomly chooses a number between 0 and 120% of its value for each
package. The upper bound is chosen based on previous experimental evidence on bidding
range in single-unit Vickrey auctions (Kagel 1995). The server collects all bids from each
group, computes the final allocation and payoff for each bidder and sends this information
back to the bidder’s screen. Each human bidder gets the following information at the end
of each auction: his allocation, his price and price adjustment, his value for the allocated
package, his profit for this auction and his cumulative profit.

In the iBEA treatments, each subject is given a menu, which contains the following
columns: the package, his value for each package, his price, his temporary profit, two check
boxes (whether he wants to bid on a package, and whether he wants his bid to be the
last-and-final bid) and the status of his previous bid (winning, losing, last-and-final and
winning, and last-and-final and losing). The bidder may check either, both or neither of
the two checkboxes. Recall that for winning bids and last-and-final bids, the checkboxes
are automatically checked.

In the iBEA auction, a robot following the Sincere strategy adopts the MBR. A robot
following the Random strategy examines his menu and looks for packages for which he has
an original temporary profit of greater than –£5. For each package that yields at least a
temporary profit of –£5, he flips a coin to decide whether or not to place a bid on that
package.

Robots choose the last-and-final option for any package they place bids on that have an
original negative temporary profit.

Then the auction proceeds, as described in Section 2.

[Table 2 about here.]
10The zTree program sets a lower bound of zero and an upper bound of 1000 for the bids.
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Table 2 presents the relevant features of the experimental sessions, including mech-
anisms, robot strategy profiles, information conditions, the shorthand notation for each
treatment, the number of subjects for each treatment and the exchange rates.11 Overall, 12
independent computerized sessions were conducted in the RCGD lab at the University of
Michigan from July to November 2003. We used zTree (Fischbacher 1999) to program our
experiments. Our subjects were students from the University of Michigan.12 No subject was
used in more than one session, yielding a total of 115 subjects across all treatments. Each
iBEA session lasted approximately two hours, while each Vickrey session lasted approxi-
mately one hour. In addition to their auction earnings, subjects could win or lose money
based on their quiz answers. A subject with fully correct answers gets $5. Each mistake
in the quiz costs 50 cents. The average earning (including quiz award) was $26.6 for the
Vickrey auction and $47.13 for the iBEA auction. Data are available from the authors upon
request.

4 Hypotheses

Based on the theoretical predictions and our experimental design, we identify the following
hypotheses.

Hypothesis 1. In Vickrey auctions, bidders will bid on all packages.

Hypothesis 2. In Vickrey auctions, bidders will bid truthfully.

Hypotheses 1 and 2 are based on the dominant strategy of the Vickrey auction. The next
two hypotheses are based on the theoretical predictions of the iBEA auction.

Hypothesis 3. In iBEA auctions, bidders will bid on packages within £5 of the maximum
temporary profit.

Hypothesis 4. In iBEA auctions, bidders will choose the last-and-final option for all pack-
ages with negative temporary profits.

We now formulate hypotheses which compare the performance of the two mechanisms. As
iBEA is an ascending version of Vickrey, we expect, ex ante, that the two mechanisms will
generate the same bidder profit, auctioneer revenue and efficiency.

Hypothesis 5. Vickrey and iBEA will generate the same amount of bidder profit.

Hypothesis 6. Vickrey and iBEA will generate the same amount of auctioneer revenue.

Hypothesis 7. Vickrey and iBEA will generate the same efficiency.

As the environment is increasingly competitive with an increase in the number of Sincere
robots, we expect that the human bidder will have the highest profit when competing
against two Random Robots, and will have the lowest profit when competing against two
Sincere Robots. We also expect the human bidder to learn from robot strategies in the high
information treatments.

11At the end of iSS`, iSSh and iSR`, the actual earnings of subjects were low; therefore, we adjust the
exchange rate to $1 equal £1 for iSS` and iSSh, and $1 equal £1.2 for iSR`. Since these adjustments happened
at the end of the experiment, and no subject was used for more than one session, we do not expect them to
affect the experimental results.

12Doctoral students in Economics are excluded from participation.

13



5 Results

In this section, we first examine individual bidder behavior in Vickrey and iBEA auctions.
We then compare the aggregate performance of the two auctions.

5.1 Individual Behavior in Vickrey Auctions

Our Vickrey auction experiment consists of 60 subjects, each of whom independently plays
10 auctions with two robots in one of the six treatments. In each auction, a subject can bid
on any of the 15 packages at any price between £0 and £1000.

Unlike the single item case, the strategy in a multi-item Vickrey auction with package
bidding has two dimensions. The first dimension is whether to bid on a package. The
second is how much to bid on a package if one decides to bid on it. A bidder’s strategy on
either dimension affects his profit, as illustrated in a series of simulations in Figure 1.

[Figure 1 about here.]

Figure 1 presents simulated profits for the human bidder under the three different en-
vironments in the Vickrey auction. The top panel (a) presents results for the environment
with two sincere robots. The middle panel (b) presents results for the environment with one
sincere and one random robot. The bottom panel (c) presents results for the environment
with two random robots. The horizontal plane consists of the two strategy dimensions, the
probability of bidding on a package, and the bid/value ratio for a package. In the sim-
ulation, we generate 10,000 hypothetical auctions, each of which consists of independent
draws of the values for items A, B, C and D from the uniform distribution on {0, 1, 2, · · · ,
10}. In our hypothetical auctions, the preferences for the human and robot bidders, as well
as the auction rules, are identical to the experimental environment. For each combination
of the Probability of Bidding (drawn from the interval [0, 1] with a grid size of 0.02) and
Bid/Value Ratio (drawn from the interval [0, 2] with a grid size of 0.04), we compute the
average profit for the human bidder across these 10,000 auctions, and report it on the ver-
tical axis. Comparing the profit from each strategy combination across environments, we
find that, Sincere-Sincere is the most competitive environment, with the lowest profit level
for the human bidder occurring at any given combination of the probability of bidding and
the bid/value ratio. The Sincere-Random environment is the next most competitive, fol-
lowed by the Random-Random environment. To analyze the tradeoffs of the two dimensions
within each environment, we use the contour set for each environment.

[Figure 2 about here.]

Figure 2 presents the contour sets for the three environments specified in Figure 1. The
horizontal axis is the Bid/Value Ratio, while the vertical axis is the Probability of Bidding.
Each curve represents combinations of the bid/value ratio and the probability of bidding
which yield the same profit. The highest profit is achieved in each case when the probability
of bidding is 1, and the bid/value ratio is also 1, i.e., bidding on every package and bidding
one’s true value for each package, which is the dominant strategy. Each curve is similar to
an indifference curve. The “inner” (or “upper”) curves represents high profit levels.
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[Table 3 about here.]

Table 3 presents results for the human bidders’ bidding decisions, averaged across all
treatments. The Active Bids column presents the ratio of positive and zero bids over 600,
which is the total number of bids if every bidder bids on every package. Note a zero bid is
an active bid, while no bid is inactive. The Bid/Value Ratio is the mean ratio of the bid to
the value of a package. The next three columns present the proportion of Truthful Bidding,
Overbidding and Underbidding among active bids, respectively.

Even though bidding on every package is a weakly dominant strategy, the results in the
second column of Table 3 show that the proportion of bids never reaches 100% on any pack-
age. Furthermore, participants bid on packages containing items AB more frequently than
they do on other packages. We now investigate which factors induce a higher proportion
of active bids. We use a probit model with robust clustering at the individual level. The
dependent variable is Active Bids, a dummy variable, which equals one if a bidder places
an active bid on a package and zero otherwise. The independent variables include Value of
a package, a dummy variable DAB, which equals one if a package contains both items A
and B, and zero otherwise, and a dummy variable DHS , which equals one if the information
condition is High and there is at least one sincere robot bidder, and zero otherwise. The
reason for including the latter is that participants might learn from the sincere robot strat-
egy. Even though we are explicit in the instructions for all High Information treatments
that robots bid on all packages, participants might ignore both parts of the random robot
strategy, as the second part is obviously not optimal. Indeed, replacing the last dummy
with a dummy DH , which equals one with High Information and zero otherwise, results in
an insignificant coefficient.

Result 1 (Whether to Bid on a Package). Bidders are significantly more likely to bid
on packages with higher values. In addition, they are more likely to bid on packages with
synergistic items. The proportion of active bids increases significantly in treatments with
at least one sincere robots and high information.

[Table 4 about here.]

Support. Table 4 presents results from the two probit specifications described above. The
coefficients are probability derivatives. The Value of a package increases the likelihood of
bidding on this package by 0.8%. If a package contains the synergistic bundle AB, the
likelihood that a subject bids on this package is increased by 8.5%. Compared to other
information conditions, subjects increase the likelihood of bidding on packages by 16.4%
with at least one sincere robot and high information. All coefficients are significant at the
one- or five-percent level.

Result 1 indicates that bidders are significantly more likely to bid on high value packages
and those with synergistic bundles. Furthermore, bidders imitate the Sincere Robot, but
not the Random Robot.

We now explore the second dimension of bidding strategy, how much to bid on a package.
To investigate how much participants bid on a package in a Vickrey auction, we use a
structural approach based on Hypothesis 2, which proposes that bidding one’s true valuation
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is a weakly dominant strategy. To test this hypothesis, we use an OLS regression with
clustering at the individual level. In the first specification, we use Bid as the dependent
variable, and Value as the only independent variable. We do not include a constant because
of the theoretical prediction. In the second specification, we add Auction, Cumulative
Profit, DAB and DHS as independent variables. The variable Auction denotes the number of
auctions in a session. Thus, this variable captures any learning effect. For each specification,
we run two-sided Wald tests of the null hypothesis of bids being equal to values against the
alternative hypothesis of bids not being equal to values. The results are presented in Table
5.

[Table 5 about here.]

The results in Table 5 indicate that, on average, bidders tend to underbid, rather than
overbid, in Vickrey auctions. In specification (1), the coefficient for Value is 0.962, which is
close to truthful preference revelation. In a similar regression conducted by Isaac and James
(2000), the coefficient for Value is 0.95 and not statistically different from one.13 To classify
bidders, we repeat the first specification in Table 5 for each bidder. We then perform the
Wald test for the null hypothesis that the coefficient on Value is 1 and subsequently classify
bidders into the following groups.

1. Underbidder: If we can reject the hypothesis of truthful bidding at the 5% level and
the coefficient is below 1.

2. Truthful Bidder: If we cannot reject the hypothesis of truthful bidding at the 5%
level.

3. Overbidder: If we can reject the hypothesis at the 5% level and the coefficient is above
1.

We now summarize the analysis of bidding behavior in Vickrey in the following result.

Result 2 (Bid Price in Vickrey). Bidders in a Vickrey auction, on average, bid 96.2% of
their true value. Of our participants, 57% can be classified as underbidders, 32% as truthful
bidders and 12% as overbidders.

Support. Table 5 presents the OLS regression results for our Vickrey auctions. The co-
efficient estimates show the amount subjects bid compared to their valuations. Robust
standard errors in parentheses are clustered at the individual level. A two-sided Wald test
of the null hypothesis of bids being equal to values yields p-value of 0.193. The classifica-
tion of bidders comes from regressions at the individual level. The average R2 of individual
regressions is 0.934, with a standard deviation of 0.131.

Most previous laboratory studies of single-unit Vickrey auctions find that bidders tend
to overbid in such environments (Kagel 1995). In multi-unit uniform price auctions, bidders
tend to overbid on the first unit and underbid on the second unit, which is consistent with

13Isaac and James (2000) also include a constant, which is estimated to be −0.19 and not statistically
different from zero.
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the theoretical prediction of demand reduction (Kagel and Levin 2001). Our finding that
most bidders either underbid or bid their true value in Vickrey auctions is in stark contrast
with previous experimental results. Our study presents empirical evidence that the “robust”
finding of overbidding in single-unit Vickrey auctions does not carry over to package Vickrey
auctions.

In addition to studying overall bidding behavior, we examine how learning may impact
bidding behavior. To do so, we first define bidding pattern as a combination of two different
measures, the Number of Active Bids14 in an auction and the Bid/Value Ratio. To identify
the effects of prior experience while minimizing individual-specific characteristics on bidding
behavior, we use a difference-in-difference approach. First, for each auction, we take the
difference of the Number of Active Bids between the current and the previous auctions.
We then classify all observations into two groups, a winner group where subject(s) won a
package in the previous auction, and a loser group, where they did not. Finally, we compare
the difference between the two groups. We analyze the Bid/Value Ratio in a similar way.

Result 3 (Effect of Prior Experience on Bidding). Losers in a previous auction
are significantly more likely to change their number of active bids, compared to winners.
Furthermore, losers increase their bid/value ratio, while winners decrease their bid/value
ratio. The difference is significant at the one-percent level.

Support. A loser in a previous auction changes his number of active bids by 2.12, on
average (with a standard error of 0.221), while a winner in the previous auction changes
his number of active bids by only 1.22 (with a standard error of 0.116). The difference is
statistically significant at the level of 1%. A two-sample t-test with equal variances yields
a p-value of 0.0001.
Furthermore, a loser in a previous auction increases his bid/value ratio by 0.102 on average
(with a standard error of 0.031), while a winner in the previous auction decreases his
bid/value ratio by 0.047 (with a standard error of 0.039). The difference is statistically
significant at the 1% level. A two-sample t-test with equal variances yields a p-value of
0.0084.

Result 3 indicates that participants in our study learn from prior experience. The direc-
tions of change for winners and losers are intuitive, yet indicate that the dominant strategy
is not transparent to a substantial number of participants, who adjust their behavior by
trial and error.

To understand the individual learning dynamics in our Vickrey auctions, we also inves-
tigate individual learning through two learning models, the reinforcement learning model
(Erev and Roth 1998) and the payoff assessment learning model (Sarin and Vahid 1999).
Both models have been shown to track human learning behavior fairly well in a variety of
games, such as relatively simple games (Erev and Roth 1998), games with complete infor-
mation (Chen and Gazzale 2004) and of limited information (Chen and Khoroshilov 2003).
However, we find that neither tracks learning dynamics well in the more complex Vickrey
auctions. The results are available from the authors upon request.

Overall, the most surprising finding in our Vickrey auctions is that most bidders either
underbid or bid their true value. Even though the dominant strategy is not transparent,

14This is equivalent to the likelihood of bidding when the total number of packages is fixed.
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our subjects tend to adjust their behavior by trial and error. These findings in individual
behavior will translate into interesting aggregate performance measures, which we analyze
in Section 5.3.

5.2 Individual Behavior in iBEA

Our iBEA experiment consists of 55 subjects, each of whom independently plays 10 auctions
with two robots in one of the six treatments. At any round of an iBEA auction, each
participant strategy has two components: which package(s) to bid on, and when to check
the last-and-final option.

To analyze our iBEA auction results, we define adjusted temporary profit as the tempo-
rary profit of a package after a subject considers whether to check the last-and-final option.
For packages with the last-and-final option checked, the temporary profit is increased by £5.
The myopic best response (MBR) strategy in an iBEA auction states that bidders should
bid on packages within ε of the maximum adjusted temporary profit. Among packages a
participant can actively bid on,15 we group packages by their adjusted temporary profits in
each round of the auction. Those packages within £5 of the maximum adjusted temporary
profit are called the MBR packages. Sincere Robots bid only on MBR packages. The rest
of the packages are called non-MBR packages.

[Figure 3 about here.]

Figure 3 presents the proportion of human bidders that bid on MBR and non-MBR
packages among all packages a participant can actively bid on, in each of the six different
treatments. Comparing the low and high information treatments within SS, SR and RR,
the proportion of bids (MBR and non-MBR) increases when more information is provided.
However, this increase seems to occur mostly with MBR packages in SS and SR, while in
RR, the proportion of bids on both MBR and non-MBR packages increases. This increase
is consistent with the hypothesis that humans learn from robot strategies. We now use
probit models to formally check our impression from Figure 3.

[Table 6 about here.]

Table 6 presents six probit specifications which examine factors affecting the likelihood of
MBR bids. In all specifications, the dependent variable is PlaceBid, a dummy variable which
equals one if a bid is placed on a package and zero otherwise. The independent variables
are Temporary Profit, Dab, Dinfo in specifications (1), (3) and (5). In specifications (2), (4)
and (6), we add an independent variable, Dinfo*MBR, which equals one if the information
condition is high and the package belongs to the set of MBR packages, and zero otherwise.
This variable controls for the information condition on MBR package bidding. Note that
Dab and Dinfo*MBR are positively correlated. We summarize the results in the following
discussion.

15Recall that last-and-final packages and winning packages from previous rounds are automatically checked
in the current round; therefore, a participant cannot act on them. Consequently, we do not consider them
as part of the choice set for the subject.
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Result 4 (Bidding Decision in iBEA). In our iBEA auctions, we find that bidders are
significantly more likely to bid on packages with a higher temporary profit. We also find
that additional information on robot strategies
(1) induces significantly more bids on both MBR and non-MBR packages under RR, but
not under SS or SR;
(2) induces significantly more bids on MBR packages under SS and SR, but not under RR.

Support. In Table 6, the coefficients on Temporary Profit are positive and significant in
all six specifications. The coefficient on Dinfo is positive and significant in specification (5),
but not in (1) - (4) or (6). The coefficient of Dinfo*MBR is positive and significant in (2)
and (4), but not in (6).

Result 4 confirms our intuition from Figure 3 that knowledge of robot strategies sig-
nificantly impacts human bidding behavior. While the Sincere Robot induces more MBR
bids, the Random Robot tends to increase bids on both types of packages. This suggests
that, in a complex auction, participants might not be able to figure out the optimal bidding
strategy, and thus are susceptible to learning. Therefore, in the actual implementation of
an iBEA auction, teaching bidding strategies may make bidding more effective.

We now explore specifically whether subjects learn the robot strategy regarding the
last-and-final option. In all iBEA treatments, all robots follow the equilibrium strategy in
checking the last-and-final option, i.e., they check this option for a package whose temporary
profit is negative. In our high information treatments, subjects are explicitly told when
robots check the last-and-final option. We are interested in two questions. First, do subjects
learn to use this option? Second, when they use this option, do they use it at the right
time?

[Table 7 about here.]

Table 7 presents summary statistics on the mean temporary profit of all last-and-final
bids in a treatment, the number of such bids where the temporary profits are negative, or
non-negative, the total number of last-and-final bids and the proportion of negative last-
and-final bids. The average temporary profit is £1.96 for all treatments, £0.77 for high
information treatments and £4.40 for low information treatments. The difference between
the high and low information treatments is highly significant overall, as well as within
each environment (p-value < 0.01 for two sample t-tests with equal variance in all four
cases). This indicates that subjects tend to check this option earlier than would be optimal.
However, they learn from the robot strategies in the high information treatments. Another
interesting result is that, among the three high information treatments, the temporary profit
of the last-and-final bids in the RR environment is significantly higher than that in the SS
and SR treatments (p-value < 0.01 for two sample t-tests with equal variance). This could
be due to two reasons. First, because the environment RR is less competitive, the auction
lasts fewer rounds than the SR or SS environments. Therefore, the SR and SS environments
give bidders more time to learn. Second, the first dimension of a random robot’s strategy
(which packages to bid on) is obviously not optimal, which might have spillover effects on
the second dimension, i.e., when to check the last-and-final option. To evaluate these causes,
we use the following specifications.

19



[Table 8 about here.]

Table 8 reports the results of two OLS specifications, each of which controls for clustering
at the individual level. In both specifications, the dependent variable is the Temporary
Profit of the last-and-final bids. In specification (1), the independent variables are Round
(the round when the last-and-final option is checked), Dinfo (a dummy variable which
equals one under high information treatments, and zero otherwise), and a constant. As
we expect the temporary profit to be lower the longer an auction lasts, we use Round to
control this effect, while we study the effects of information conditions. The results in
Table 8 show that the coefficients of both Rounds and Dinfo are negative and significant.
In specification (2), we add another independent variable, DHS , a dummy which equals
one if the information condition is high and there is at least one Sincere robot, and zero
otherwise. When this variable is added, the coefficient for Dinfo is no longer significant at
the 5% level. This indicates that information on sincere robot strategies, rather than on
random robot strategies, leads bidders to learn optimal bidding strategies.

Overall, in our iBEA auctions, consistent with the MBR strategy, bidders are more likely
to bid on packages with higher temporary profits. Furthermore, bidders seem to imitate
bidding strategies from the Sincere robots, and not the Random robots.

5.3 Aggregate Performance of the Two Mechanisms

We now examine the aggregate performance of the two mechanisms in three aspects: bidder
profit, auctioneer revenue and efficiency.

In examining bidder profit, we look at both human bidder profit and aggregate human
and robot profit in each treatment. Auctioneer revenue in this analysis follows the standard
definition.

In single-unit auctions, efficiency is often measured by a ratio of the number of auctions
where the object goes to the bidder with the highest valuation to the total number of
auctions. In the multi-unit context, this definition is not applicable. Instead, we use the
definition of efficiency developed by Kagel and Levin (2001). In this definition, efficiency
of an auction is the ratio of the total surplus of the allocation to the highest possible surplus
among all possible allocations, where total surplus is the sum of bidder profit and auctioneer
revenue. In our environment, we have 256 possible allocations in total, as there are four
items and three bidders (256 = 44). Note that it is not sufficient to consider 34 = 81
allocations, since some allocations which leave item(s) unsold may yield the highest revenue
to the auctioneer. For example, suppose that Bidder 1 bids on A at $1 and Bidder 2 bids
on B at $1, and that Bidder 3 bids for C at $2 and CD at $1. In this case, the auctioneer
does not sell D to anyone. Therefore, the problem is equivalent to allocating four items
among four agents (three bidders and an auctioneer), yielding 256 possible allocations.

[Figure 4 about here]

Figure 4 presents the distribution of actual observed efficiencies in all auctions, pooling
across all treatments. The left panel is the efficiency distribution under the iBEA auctions,
and the right panel is the efficiency distribution under the Vickrey auctions. From Figure
4, it is clear that the Vickrey auction, on average, generates higher efficiency.
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[Table 9 about here.]

Table 9 presents summary statistics on the average human profit, total bidder profit,
auctioneer revenue and efficiency under each auction mechanism. Recall that, in the exper-
iment, the price increment in the iBEA auction is £5 due to the length of the auction, while
in the Vickrey auction we use a grid size of £1. We take seriously the possibility that the
performance of iBEA might be disadvantaged due to this difference in grid size. Therefore,
under each category, we present two columns for the Vickrey auction, one representing the
observed results and a second representing the hypothetical results. In this case, observed
efficiency (or bidder profit or revenue) is the actual experimental observation using a grid
size of £1, while the hypothetical measure uses a grid size of £5. In computing the latter,
we round the actual bids up or down to the closest integer on a grid of size 5. When we
adjust the Vickrey auction grid size, iBEA and Vickrey auctions are more comparable in
these measures. Of course we do not rule out the possibility that participant behavior might
be psychologically affected by grid size. Thus, we compare the iBEA auction with both the
hypothetical and actual Vickrey auction results. This comparison shows that the iBEA
auction yields better human and total profit, while the Vickrey auction achieves higher
Revenue and Efficiency. Since session average does not control for a number of exogenous
factors, we use the following specifications to model factors affecting the performance of
each mechanism.

[Table 10 about here.]

Table 10 presents four OLS specifications. The dependent variable in each specification
is (1) Human Profit, (2) Total Profit, (3) Revenue and (4) Efficiency. The independent
variables are Mechanism, which equals 1 for the iBEA auction and 2 for the Vickrey auction,
Dinfo, the number of random robots, quiz score and a constant. Note that we use a
hypothetical grid size of 5 in computing each of these measures under the Vickrey auction,
so that it is comparable to the iBEA auction. All results hold if we use the actual Vickrey
grid size of 1. We summarize our findings below.

Result 5 (Bidder Profit). Human bidder profit, as well as total profit, are significantly
higher in the iBEA auction than in the Vickrey auction. Furthermore, the number of
random robots significantly increases human profit, and weakly increases total profit. A
higher quiz score significantly increases human profit.

Support. In Table 10, for specification (1), the coefficient for Mechanism is negative and
significant. The coefficients for the number of random robots and quiz score are both
positive and significant. In specification (2), the coefficient for Mechanism is negative and
significant. The coefficient for the number of random robots is weakly significant at the
10% level.

By Result 5, we reject Hypothesis 5. As an ascending version of the Vickrey auction,
the iBEA auction generates significantly high profits for the human bidder. We find it
interesting that a high quiz score at the end of the instruction significantly increases bidder
profit, indicating that those who have a better understanding of the rules of the auction
end up doing better. Note that part of this result may reflect a stronger ability to imitate
sincere robot strategies as well as better understanding of the rules.
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Result 6 (Revenue). Vickrey auctions generate significantly higher revenue than iBEA
auction. In addition, the number of random robots significantly decreases revenue in both
auctions.

Support. In Table 10, for specification (3), the coefficient for Mechanism is positive and
significant. The coefficient for the number of random robots is negative and significant.

By Result 6, we reject Hypothesis 6. Unlike the theoretical prediction of equal revenue
performance, sealed-bid Vickrey auctions generate significantly higher revenue than do as-
cending iBEA auctions. This result is particularly interesting in light of the concern in
the literature that Vickrey auctions might generate low revenue. Our finding of superior
Vickrey auction results could be due to the fact that each human bidder competes against
two robots in our experimental setting, which makes it impossible to collude. This points to
a fruitful area of further research, which is to implement Vickrey package auctions among
human bidders to check if this result still holds.

In our study, we measure efficiency through bidder profit and seller revenue. Using this
measure, we find the following results.

Result 7 (Efficiency). Vickrey auction generates significantly higher efficiency than does
the iBEA auction. Furthermore, the number of random robots significantly decreases effi-
ciency, while a higher quiz score significantly improves efficiency.

Support. In Table 10, for specification (4), the coefficient for Mechanism is positive and
significant at the one percent level. The coefficient for the number of random robots is
negative and significant, while that for the quiz score is positive and significant.

By Result 7, we reject Hypothesis 7. Empirical evidence from past laboratory studies of
Vickrey and its strategically equivalent ascending bid auctions shows that, in the single unit
case and the multi-unit homogeneous object case, the ascending auction usually achieves
higher efficiency (Kagel 1995). This difference in performance is usually attributed to
feedback in the ascending bid auction which makes bidding strategies more transparent
(Kagel, Kinross and Levin 2003). Our results show that, with package bidding, the Vickrey
auction generates significantly higher efficiency than does the ascending iBEA auction.

6 Conclusion

Package auctions have become increasingly popular in procurement and complex resource
allocation contexts and thus have stimulated a large body of theoretical research in com-
binatorial auctions in economics and computer science. Because of the concerns over the
deficiencies of Vickrey auctions, several new ascending package auctions have been proposed
to implement efficient allocations under various assumptions. One of the most prominent
new ascending package auctions is the iBEA auction, which achieves approximately efficient
allocation and implements Vickrey payments under minimal assumptions on preferences.

As a first step in using this auction as an actual economic process that solves naturally
occurring problems, we observe the performance of the iBEA auction in the context of simple
situations that can be created in a laboratory. We then assess its performance relative to a
natural and important benchmark, the sealed-bid Vickrey auction.
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As the first experimental study of the iBEA auction in comparison with the Vickrey
auction, we use a simple environment where each human bidder competes against two robots
with different levels of bidding intelligence. This implementation creates an environment
free from the strategic uncertainties inherent in interactions between human bidders.

Our experiment yields several surprising findings. First, unlike the single-unit Vickrey
auction where bidders tend to overbid in the laboratory, most of our bidders either un-
derbid or bid their true value. A simple dynamic adjustment model captures the learning
dynamics reasonably well. Second, in terms of aggregate performance, while bidder profit is
significantly higher in the iBEA auction, the Vickrey auction generates significantly higher
revenue and efficiency than does the iBEA auction. This result is particularly interesting in
light of the general concern in the literature (Milgrom 2004) that package Vickrey auctions
might generate low revenue. Admittedly, our result on revenue might be a consequence of
our experimental setting where a human bidder competes with two robots, making it im-
possible to collude. Nonetheless, it has important implications for the increasingly popular
use of automated agents. It also points to a natural next step of the research, which is to
let human bidders compete against other humans to check if they collude and thus lower
revenue. Lastly, we find that when human bidders compete against robots in a complex
environment, they learn from their robot opponents when the robot strategies are intelligent
(e.g., myopic best responses).

With this first laboratory study of the iBEA auction, we identify several issues that
warrant further empirical study. The first issue is the tradeoff between the speed and
efficiency of the auction as manipulated through setting different price increments. The
larger the auctioneer sets the price increment, the faster the auction converges. However,
the final allocation might be further away from the efficient allocation. In an auction with
a large number of bidders, we expect the second phase of the iBEA auction to take longer.
Thus, it is important to quantify the speed-efficiency tradeoff. The second issue is whether
bidders can detect the second phase of the auction and thus collude to increase bidder profit.
As in Vickrey auctions, the use of robots in our experiment makes second phase collusion
impossible. Therefore, one should interpret our results as empirical findings in the absence
of collusion.

Empirical investigations of package auctions have important implications not only in
procurement and privatization, but also potentially in the allocation of scarce equipment
time in large scientific collaboratories. Past studies, such as Kwasnica et al. (2005), show
that, with synergies, package auctions tend to outperform auctions without package bidding.
The natural next step is to evaluate the pool of package auction mechanisms under a variety
of environments in the laboratory, select those which perform robustly well, and test them
in a field setting. This study contributes to the laboratory evaluation of two important
package auction mechanisms, the Vickrey and iBEA auctions. In light of past findings, the
results are surprising. Thus, they point to fruitful areas of future research.
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bidder 1 bidder 2 bidder 3
Package A B AB A B AB A B AB
Value 10 0 10 0 30 30 4 14 22

Phase Round (Bid, Price) (Bid, Price) (Bid, Price)
I 1 (A, 0) (AB, 0) (B, 0) (AB, 0) (AB, 0)
I 2 (A, 0) (AB, 0) (B, 0) (AB, 0) (B, 0) (AB, 5)
I 3 (A, 5) (AB, 5) (B, 5) (AB, 5) (B, 0) (AB, 5)
I 4 (A, 5) (AB, 5) (B, 5) (AB, 5) (B, 5) (AB,10)
I 5 (A, 5) (AB, 5) (B, 5) (AB, 5) (A, 0) (B,10) (AB,15)
I 6 (A, 5) (AB, 5) (B,10) (AB,10) (A, 0) (B,10) (AB,15)
I 7 (A, 5) (AB, 5) (B,15) (AB,15) (A, 0) (B,10) (AB,15)
I 8 (A, 5) (AB, 5) (B,15) (AB,15) (A, 0) (B,10) (AB,20)
I 9 (A, 5) (AB, 5) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

II (A, 5) (AB, 5) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

II 10 (A,10) (AB,10) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

II (A,10) (AB,10) (B,15) (AB,15) (A, 0) (B,10) (AB,20)

II 11 (A,10) (AB,10) (B,20) (AB,20) (A, 0) (B,10) (AB,20)

Notes:
1. Boldface indicates the winning bid after the current round.
2. Italics indicate bids with the last-and-final option.
3. (Bid,Price) indicates that the (Bid, Price) pair is excluded.

iBEA Package Price Piv. Revenue Rebate Final Price Profit
bidder 1 A 10 20 10 0 10
bidder 2 B 20 20 10 10 20
bidder 3 - - - - 0

auctioneer - - - - 10
Vickrey Package Price Piv. Revenue Rebate Final Price Profit
bidder 1 A 10 34 6 4 6
bidder 2 B 30 24 16 14 16
bidder 3 - - - - 0

auctioneer - - - - 18
Note: Piv. Revenue refers to total revenue when bidder i is excluded.

Table 1: A Simple Example of an iBEA Auction Process
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Mechanism Robot Strategies Information Notation # of Subjects Exchange Rates
High iSSh 10 2

iBEA Sincere, Sincere Low iSS` 10 2
High iSRh 9 1.5

iBEA Sincere, Random Low iSR` 8 1.5
High iRRh 8 1

iBEA Random, Random Low iRR` 10 1
High vSSh 10 1.25

Vickrey Sincere, Sincere Low vSS` 10 1.25
High vSRh 10 1.25

Vickrey Sincere, Random Low vSR` 10 1.25
High vRRh 10 1.25

Vickrey Random, Random Low vRR` 10 1.25

Table 2: Features of Experimental Sessions

Package Active Bids Bid/Value Underbidding Truthful Bidding Overbidding
A 0.700 0.989 0.538 0.271 0.190
B 0.663 0.995 0.503 0.307 0.191
C 0.668 1.184 0.544 0.284 0.172
D 0.653 0.875 0.531 0.296 0.173

AB 0.860 1.029 0.572 0.217 0.211
AC 0.708 0.964 0.607 0.224 0.169
AD 0.702 0.908 0.620 0.219 0.162
BC 0.713 0.959 0.605 0.206 0.189
BD 0.697 0.948 0.610 0.208 0.182
CD 0.730 0.917 0.584 0.249 0.167

ABC 0.835 0.978 0.605 0.202 0.194
ABD 0.802 0.953 0.613 0.200 0.187
ACD 0.743 0.954 0.596 0.231 0.173
BCD 0.722 0.962 0.580 0.238 0.182

ABCD 0.827 1.005 0.597 0.198 0.206

Table 3: Proportion of Active Bids, Bid/Value Ratio and Proportion of Under-, Truthful,
and Overbidding in the Vickrey Auction
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Dependent Variable: Active Bids
(1) (2)

Value 0.008 0.008
(0.002)*** (0.003)***

DAB 0.085 0.086
(0.021)*** (0.022)***

DHS 0.164
(0.072)**

Dinfo -0.017
(0.077)

Observations 9000 9000
Notes:
1. Coefficients are probability derivatives.
2. Robust standard errors in parentheses are adjusted for clustering at the individual level.
3. Significant at: ** 5% level; *** 1% level.

Table 4: Probit: Factors Affecting the Likelihood of Active Bids in the Vickrey Auction

Dependent Variable: Bid
(1) (2)

Value 0.962 0.937
(0.029)*** (0.028)***

Auction 0.045
(0.115)

DHS -0.874
(0.634)

Cum. Profit -0.053
(0.042)

DAB 0.526
(0.327)

Constant 0.875
(0.789)

Observations 6614 6614
R-squared 0.81 0.52

Notes:
1. Robust standard errors in parentheses are

adjusted for clustering at the individual level.
2. Significant at: *** 1% level.

Table 5: OLS: Bidding Decision in the Vickrey Auction
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Dependent Variable: PlaceBid
(1) (2) (3) (4) (5) (6)
SS SS SR SR RR RR

Temp. Profit 0.013 0.010 0.016 0.014 0.013 0.013
(0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)***

DAB 0.045 0.020 0.031 0.020 0.050 0.046
(0.015)*** (0.013) (0.015)** (0.014) (0.015)*** (0.016)***

Dinfo 0.078 -0.025 0.095 0.019 0.074 0.054
(0.057) (0.048) (0.053)* (0.058) (0.038)** (0.050)

Dinfo*MBR 0.271 0.144 0.041
(0.096)*** (0.027)*** (0.034)

Observations 23643 23643 16506 16506 13680 13680
Notes:
1. Coefficients are probability derivatives.
2. Robust standard errors in parentheses are adjusted for clustering at the individual level.
3. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 6: Probit: Likelihood of MBR Bidding in the iBEA Auction

Treatment Mean Temp Profit Negative Non-Negative Total Correct Rate
SS` 3.97 38 79 117 32.48%
SR` 3.86 5 80 85 5.88%
RR` 10.16 0 19 19 0.00%
SSh 1.36 128 108 236 54.24%
SRh -0.25 97 107 204 47.55%
RRh 4.56 2 16 18 11.11%

Table 7: Last-and-Final Summary Statistics for the iBEA Auction
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Dependent Variable: Temp. Profit of Last-and-Final Bids
(1) (2)

Round -0.390 -0.399
(0.101)*** (0.102)***

Dinfo -3.786 -3.061
(1.367)*** (1.586)*

DHS -1.501
(1.072)

Constant 6.943 7.001
(1.525)*** (1.525)***

Observations 679 679
R-squared 0.18 0.19

Notes:
1. Robust standard errors in parentheses are adjusted

for clustering at the individual level.
2. * Significant at: * 10% level; ** 5% level; *** 1% level

Table 8: OLS: Temporary Profit of Last-and-Final Bids

Human Profit Total Profit
Treatment iBEA Vickrey Vickrey (grid 5) iBEA Vickrey Vickrey (grid 5)

SS` 3.04 2.72 2.23 16.29 10.85 8.75
SR` 3.56 1.80 2.46 18.15 8.56 8.70
RR` 7.02 3.30 2.96 18.27 9.58 9.33
SSh 2.71 2.48 2.14 16.84 10.06 9.18
SRh 3.75 2.96 2.89 17.77 9.75 8.99
RRh 7.05 2.73 2.67 17.85 10.10 9.53

Revenue Efficiency
robots iBEA Vickrey Vickrey (grid 5) iBEA Vickrey Vickrey (grid 5)
SS` 13.87 20.12 20.90 92.2% 98.4% 94.02%
SR` 8.86 20.04 19.70 84.8% 90.3% 89.60%
RR` 7.13 18.88 18.75 78.3% 89.7% 88.28%
SSh 13.05 20.44 20.45 93.0% 97.4% 94.49%
SRh 9.60 19.92 20.20 87.3% 93.0% 91.40%
RRh 5.82 17.81 17.80 73.2% 88.0% 86.34%

Table 9: Aggregate Performance of the Two Mechanisms
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(1) (2) (3) (4)
Dependent Variable: Human Profit Total Profit Revenue Efficiency

Mechanism -2.422 -8.389 9.386 0.043
(0.460)*** (0.503)*** (0.487)*** (0.010)***

Dinfo 0.002 0.291 -0.351 0.003
(0.351) (0.431) (0.406) (0.008)

# of Random Robots 1.150 0.505 -2.354 -0.060
(0.212)*** (0.258)* (0.277)*** (0.005)***

Quiz Score 0.816 -0.223 0.850 0.023
(0.378)** (0.459) (0.436)* (0.010)**

Constant 2.246 26.225 -0.746 0.764
(1.352)* (1.822)*** (1.634) (0.041)***

Observations 1150 1150 1150 1150
R-squared 0.09 0.28 0.42 0.19

Notes:
1. Robust standard errors in parentheses are adjusted for clustering at the individual level.
2. Significant at: * 10%; ** 5%; *** 1% level.

Table 10: OLS: Factors Affecting Aggregate Performance of the Two Mechanisms
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Figure 1: Simulated Profit for Human Bidder under Three Environments in the Vickrey
Auction
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Figure 2: Contour of Simulated Profit for Human Bidders under the SS Environment in the
Vickrey Auction
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